Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}=\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\left|\sqrt{3}-1\right|=2-\sqrt{3}+\sqrt{3}-1=1\)
@.@ Trời ơi, nhiều thế ^^
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)
\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)
b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)
Bài 1:
a/ \(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\) .
\(\Leftrightarrow\dfrac{2\left(x^2-2x+1\right)}{6}=1\)
\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{3}=1\)
\(\Leftrightarrow\left(x-1\right)^2=3\) \(\Rightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+1\\x=-\sqrt{3}+1\end{matrix}\right.\)
vậy tập nghiệm của phương trình S=\(\left\{1-\sqrt{3};\sqrt{3}+1\right\}\)
b/ ta có: \(\dfrac{6}{x-4}=\sqrt{2}\Leftrightarrow\sqrt{2}\left(x-4\right)=6\)
\(\Leftrightarrow x\sqrt{2}-4\sqrt{2}=6\)
\(\Leftrightarrow x\sqrt{2}=6+4\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{6+4\sqrt{2}}{2}=4+3\sqrt{2}\)
vậy \(x=4+3\sqrt{2}\) là nghiệm của phương trình
c/ \(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)
\(\Leftrightarrow\left(\sqrt{\dfrac{20}{2x^2-8x+8}}\right)^2=\left(\sqrt{5}\right)^2\)
\(\Leftrightarrow\dfrac{20}{2\left(x^2-4x+4\right)}=5\)
\(\Leftrightarrow\dfrac{10}{\left(x-2\right)^2}=\dfrac{10}{2}\)
\(\Rightarrow\left(x-2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\)
vậy tập nghiệm của phương trình \(S=\left\{2+\sqrt{2};2-\sqrt{2}\right\}\)
Bài 2:
a/ đặt A= \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow A^2=3+\sqrt{5}+3-\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(\Leftrightarrow A^2=6-2\sqrt{9-5}\)
\(\Leftrightarrow A^2=6-2\sqrt{4}=6-4=2\)
\(\Rightarrow A=\sqrt{2}\)
\(\Rightarrow\)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\) = \(\sqrt{2}\)
\(\Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)
b/ \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
\(=\dfrac{\sqrt{12}}{\sqrt{15}}+\dfrac{\sqrt{75}}{\sqrt{15}}+\dfrac{\sqrt{27}}{\sqrt{15}}=\sqrt{\dfrac{12}{15}}+\sqrt{\dfrac{75}{15}}+\sqrt{\dfrac{27}{15}}\)
\(=\dfrac{2\sqrt{5}}{5}+\sqrt{5}+\dfrac{3\sqrt{5}}{5}=\left(\dfrac{2\sqrt{5}}{5}+\dfrac{3\sqrt{5}}{5}\right)+\sqrt{5}\)
\(=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)
c/ \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(24\sqrt{5}-80\sqrt{2}+105\sqrt{2}\right):\sqrt{10}\)
\(=\left(24\sqrt{5}+25\sqrt{2}\right):\sqrt{10}=\dfrac{24\sqrt{5}}{\sqrt{10}}+\dfrac{25\sqrt{2}}{\sqrt{10}}\)
\(=12\sqrt{2}+5\sqrt{5}\)
g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
a, \(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(\sqrt{3}-1\right)\)
\(=3-1-\sqrt{6}+\sqrt{2}=2+\sqrt{2}-\sqrt{6}\)
b, \(=\sqrt{300.0,04}+2\left|\sqrt{3}-\sqrt{5}\right|\)
\(=2\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
c, \(=\sqrt{196}-2\sqrt{98}+\sqrt{49}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
d, \(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+10\sqrt{5}-9\sqrt{5}=16\sqrt{5}\)
Bài 1: Rút gọn
a) Ta có: \(\left(\sqrt{3}-\sqrt{2}+1\right)\cdot\left(\sqrt{3}-1\right)\)
\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)-\sqrt{2}\cdot\left(\sqrt{3}-1\right)\)
\(=3-1-\sqrt{6}+\sqrt{2}\)
\(=2-\sqrt{2}-\sqrt{6}\)
b) Ta có: \(0.2\cdot\sqrt{\left(-10\right)^2\cdot3}+2\cdot\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
\(=0.2\cdot\sqrt{\left(-10\right)^2}\cdot\sqrt{3}+2\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=0.2\cdot10\cdot\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{5}\)
c) Ta có: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\sqrt{196}-2\cdot\sqrt{98}+\sqrt{49}+7\sqrt{8}\)
\(=14-\sqrt{392}+7+\sqrt{392}\)
=21
d) Ta có: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=\sqrt{5}\left(15+5\cdot2-3\cdot3\right)\)
\(=16\sqrt{5}\)
a,
\(\sqrt{4-2\sqrt{3}}-\sqrt{3}\\ =\sqrt{3-2\cdot1\cdot\sqrt{3}+1}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot1\cdot\sqrt{3}+1^2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}\\ =-1\)
b,
\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{9+2\cdot3\cdot\sqrt{2}+2}-3+\sqrt{2}\\ =\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)
c,
\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}\\ =\sqrt{5+2\cdot\sqrt{2\cdot5}+2}-\sqrt{5-2\cdot\sqrt{2\cdot5}+2}\\ =\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}\\ =2\sqrt{2}\)
d,
\(\left(20\sqrt{300}-15\sqrt{675}+5\sqrt{75}\right):\sqrt{15}\\ =\left(20\cdot\sqrt{20}\cdot\sqrt{15}-15\cdot\sqrt{45}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\left(20\cdot2\cdot\sqrt{5}\cdot\sqrt{15}-15\cdot3\cdot\sqrt{5}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\sqrt{15}\cdot\left(20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\right):\sqrt{15}\\ =20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\\ =40\sqrt{5}-45\sqrt{5}+5\sqrt{5}\\ =0\)
- \(\frac{\sqrt{27\left(1-\sqrt{3}\right)^4}}{3\sqrt{15}}=\frac{\sqrt{3.3^2\left(1-\sqrt{3}\right)^4}}{3\sqrt{15}}=\frac{3\left(1-\sqrt{3}\right)^2}{3\sqrt{15}}=\frac{1-2\sqrt{3}+3}{\sqrt{15}}=\frac{4-2\sqrt{3}}{\sqrt{15}}\)
- \(=\frac{\sqrt{10}\left(12-8\sqrt{2}+7.15\sqrt{2}\right)}{\sqrt{10}}=12+97\sqrt{2}\)
- \(=\sqrt{\frac{x.x\sqrt{y}}{y}}=\sqrt{\frac{x^2}{\sqrt{y}}}=\frac{|x|}{\sqrt[4]{y}}\)
a) \(=\left(\sqrt{3}+2\right)^2\)
b)\(=\left(\sqrt{5}-\sqrt{2}\right)^2\)
c)\(=\left(\sqrt{5}+\sqrt{3}\right)^2\)
d)\(=\left(\sqrt{10}-\sqrt{2}\right)^2\)
e) \(=\left(\sqrt{7}+\sqrt{5}\right)^2\)
\(A=\left(15.\sqrt{200}-4\sqrt{450}+2\sqrt{20}\right):\sqrt{10}-10\sqrt{20}\) \(=\left(15.10\sqrt{2}-4.15\sqrt{2}+2.2\sqrt{5}\right):\sqrt{10}-10.2\sqrt{5}\)
\(=\left(150\sqrt{2}-60\sqrt{2}+4\sqrt{5}\right):\sqrt{10}-20\sqrt{5}\)
\(=\left(90\sqrt{2}+4\sqrt{5}\right):\sqrt{10}-20\sqrt{5}\)
\(=\frac{90\sqrt{2}}{\sqrt{10}}+\frac{4\sqrt{5}}{\sqrt{10}}-20\sqrt{5}\)
\(=18\sqrt{5}+2\sqrt{2}-20\sqrt{5}\)
\(=2\sqrt{2}-2\sqrt{5}\)