Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì 3 chia hết cho x-1 => x-1 thuộc Ư(-3)=1,3,-1,-3
Ta có bảng
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
Vậy x thuộc 2 ; 4;0;-2
b, Vì -4 chia hết cho 2x - 1 nên 2x-1 ϵ Ư(-4) = 1;2;4;-1;-2;-4
Ta có bảng :
2x-1 | 1 | 2 | 4 | -1 | -2 | -4 |
x | 1 | vô lý | vô lý | 0 | vô lý | vô lỹ |
Vây x= 1 và 0
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Bài 4:
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=HB\cdot HC\)
Xét pt hoành độ gđ của đường thẳng và parabol có:
\(\left(m-1\right)x^2+3mx+2m=2x-1\)
\(\Leftrightarrow\left(m-1\right)x^2+x\left(3m-2\right)+2m+1=0\) (1)
Để đt và parabol cắt tại hai điểm pb có hoành độ âm
\(\Leftrightarrow\) Pt (1) có hai nghiệm âm phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m+8>0\\\dfrac{2-3m}{m-1}< 0\\\dfrac{2m+1}{m-1}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;4-2\sqrt{2}\right)\cup\left(4+2\sqrt{2};+\infty\right)\\m\in\left(-\infty;\dfrac{2}{3}\right)\cup\left(1;+\infty\right)\\m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\end{matrix}\right.\)
\(\Rightarrow m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(4+2\sqrt{2};+\infty\right)\)
Vậy...
Câu 2:
\(PT\Leftrightarrow\sqrt{\left(x-3\right)^2}=4x-21\\ \Leftrightarrow\left|x-3\right|=4x-21\\ \Leftrightarrow\left[{}\begin{matrix}x-3=4x-21\left(x\ge3\right)\\3-x=4x-21\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\x=\dfrac{24}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=6\)