Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+..........+3^{11}\)
\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)
\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)
\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)
\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)
Muốn chứng minh A thì chúng ta phải tìm A trước :
A = 2.A - A
Tính 2.A = 2 . ( 1 + 32 + 33 + 34 +...+311)
2.A = 2 . ( 1 + 33 + 34 + 35+ ... + 311 + 312 )
Tìm A : A= 2A -A
= ( 1 + 33 + 34 + 35+ ... + 311 + 312 ) - ( 1 + 32 + 33 + 34 +...+311)
= 32 + 312
= 314 = 4782969
4782969 chia hết cho 13 nhưng chia không hết cho 40
A=3+3^2+3^3+...+3^9+3^10
=(3+3^2)+(3^3+3^4)+...+(3^9+3^10)
=3(1+3)+3^3(1+3)+..,+3^9(1+3)
=4(3+3^3+...+3^9) chia hết cho 4
A = 3 + 32 + 33 + ... + 3120 (có 120 số; 120 chia hết cho 6)
A = (3 + 32 + 33 + 34 + 35 + 36) + (37 + 38 + 39 + 310 + 311 + 312) + ... + (3115 + 3116 + 3117 + 3118 + 3119 + 3120)
A = 3.(1 + 3 + 32 + 33 + 34 + 35) + 37.(1 + 3 + 32 + 33 + 34 + 35) + ... + 3115.(1 + 3 + 32 + 33 + 34 + 35)
A = 3.364 + 37.364 + ... + 3115.364
A = 364.(3 + 37 + ... + 3115)
A = 4.13.7.(3 + 37 + ... + 3115) chia hết cho 4 và 13
\(A=1+2+...+2^{11}\)
\(=\left(1+2\right)+...+\left(2^{10}+2^{11}\right)\)
\(=1\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=1\cdot3+...+2^{10}\cdot3\)
\(=3\cdot\left(1+...+2^{10}\right)⋮3\)
A = 1 + 2 + 22 + ... + 211
= (1+2) + (22+23) + ... + (210+211)
= 3.22(1+2) + ... + 210(1+2)
= 3(22+...+210) \(⋮\)3
\(CM:A⋮11\)
Số lượng số dãy số trên là :
( 90 - 1 ) : 1 + 1 = 90 ( số )
Do 90 \(⋮5\)nên ta nhóm 5 số liền nhau thành 1 nhóm như sau :
\(A=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{86}+3^{87}+3^{88}+3^{89}+3^{90}\right)\)
\(A=3.\left(1+3+3^2+3^3+3^4\right)+...+3^{86}.\left(1+3+3^2+3^3+3^4\right)\)
\(A=3.121+...+3^{86}.121\)
\(A=121.\left(3+...+3^{86}\right)⋮11\left(121⋮11\right)\left(Đpcm\right)\)
\(A=1+3^1+3^2+3^3+...+3^{2021}\\=(1+3^1)+(3^2+3^3)+(3^4+3^5)...+(3^{2020}+3^{2021})\\=4+3^2\cdot(1+3)+3^4\cdot(1+3)+...+3^{2020}\cdot(1+3)\\=4+3^2\cdot4+3^4\cdot4+...+3^{2020}\cdot4\\=4\cdot(1+3^2+3^4+...+3^{2020})\)
Vì \(4\cdot(1+3^2+3^4+...+3^{2020})\vdots4\)
nên \(A\vdots4\)
\(\text{#}Toru\)
thank you bạn character debate nha, ai vô trả lời thì cảm ơn nhiều!!