Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1
áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}\)
\(=\frac{12}{25}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Vậy A=49/50
Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
\(C=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{2013.2016}{2014.2015}\)
\(C=\frac{\left(1.2.3.....2013\right).\left(4.5.6.....2016\right)}{\left(2.3.4.....2014\right).\left(3.4.5.....2015\right)}\)
\(C=\frac{1}{2014}.\frac{2016}{3}\)
\(C=\frac{336}{1007}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{19.20}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}\)
\(=\dfrac{9}{20}\)
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{19.20}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(A=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{10}{20}-\dfrac{1}{20}=\dfrac{9}{20}\)