K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.4+3.4.3+...+3n.\left(n+1\right)\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right)n.\left(n+1\right)\)

\(3A=n.\left(n+1\right).\left(n+2\right)\)

\(\Rightarrow A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Vậy \(A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}.\)

Chúc em học tốt!

15 tháng 9 2019

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]

=n.(n+1).(n+2)

=>S=[n.(n+1).(n+2)] /3

22 tháng 2 2016

Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + n.( n + 1 ).3

=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + n.( n + 1 ).[ ( n + 2 ) - ( n - 1 ) ]

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + n.( n + 1 ).( n + 2 ) - ( n - 1 ).n.( n + 1 )

=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + [ ( n - 1 ).n.( n + 1 ) - ( n - 1 ).n.( n + 1 ) ] + n.( n + 1 ).( n + 2 )

=> 3A = n.( n + 1 ).( n + 2 )

=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

16 tháng 8 2015

3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n-1)(n+2)]

3A=1.2.3-0.1.2+2.3.4-1.2.3+...n.(n+1)(n+2)-(n-1)n(n+1)

  A=n(n+1)(n+2):3
 

28 tháng 12 2017

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

28 tháng 12 2017

tu ki ha con

17 tháng 5 2016

Ta có: A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

   =>  3A = 1.2.(3-0) + 2.3.(4-1) + .... + n.(n+1).(n+2 - n+1)

   => 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n+1).(n+2)

  =>  3A = n.(n+1).(n+2)

  = > A = \(\frac{\text{n.(n+1).(n+2)}}{3}\)

17 tháng 5 2016

\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

25 tháng 12 2018

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

2 tháng 10 2021

\(1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\\ =\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\right]\\ =\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

2 tháng 10 2021

Thank you so much!

14 tháng 8 2017

NẾU MÌNH CÓ VIẾT SAI ĐỀ MONG CÁC BẠN GIÚP

14 tháng 8 2017

Bạn viết đúng rồi 

14 tháng 7 2017

bình thường

14 tháng 7 2017

Ta có : B = 1.2 + 2.3 + 3.4 + ...... + 99.100

<=> 3B = 1.2.3 + 0.1.2 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 99.100.101

<=> 3B = 99.100.101

<=> B = \(\frac{99.100.101}{3}=333300\)