K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Mình làm mẫu 1 bài nha !

Có : 12A = 1.5.12+5.9.12+....+101.105.12

= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)

= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105

= 1.5.12-1.5.9+101.105.109

= 1155960

=> A = 1155960 : 12 = 96330

Tk mk nha

13 tháng 1 2018

Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4

= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)

= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100

= 98.99.100.101

=> D = 98.99.100.101/4 = 24497550

30 tháng 11 2015

mk k vt lại đề nha

S=2.(1/1.2+1/2.3+1/3.4+............+1/99.100)

S=2.(1-1/2+1/3-1/4+1/4-1/5+.............+1/99-1/100)

S=2.(1-1/100)

S=2.99/100

S=198/100

8 tháng 5 2018

S=\(\frac{2}{1.2}\)+\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{98.99}\)+\(\frac{2}{99.100}\)

S=\(\frac{2}{1}\).(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{98.99}\)+\(\frac{1}{99.100}\))

S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{98}\)-\(\frac{1}{99}\)+\(\frac{1}{99}\)-\(\frac{1}{100}\))

S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{100}\))

S=\(\frac{2}{1}\).(\(\frac{100}{100}\)-\(\frac{1}{100}\))

S=\(\frac{2}{1}\).\(\frac{99}{100}\)

S=\(\frac{99}{50}\)

Vậy S=\(\frac{99}{50}\)

16 tháng 3 2023

\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =2\cdot\dfrac{99}{100}\\ =\dfrac{99}{50}\)

16 tháng 3 2023

\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\left(1-\dfrac{1}{100}\right)=2\cdot\dfrac{99}{100}=\dfrac{99}{50}\)

21 tháng 4 2020

A = 1.22 + 2.32 + 3.42 + …. + 99.1002

A= 1.2.2 + 2.3.3 + 3.4.4 +...+99.100.100

A= 1.2(3-1) +2.3(4-1) +3.4(5-1) +....+ 99.100(101-1)

A= 1.2.3 - 1.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 1.3.4 +...+99.100.101- 1.99.100

A= 1.2.3 + 2.3.4 + 3.4.5+....+99.100.101 - 1.2 +2.3 + 3.4+...+ 99.100

A= 24497550 - 333300

A=24164250

Vậy...

13 tháng 8 2018

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(\frac{2}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{2}{49\cdot51}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=\frac{1}{3}-\frac{1}{51}\)

\(=\frac{16}{51}\)

13 tháng 8 2018

a) 1/1.2+1/2.3+1/3.4+...+1/99.100

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 + ... + 1/99 - 1/100

= 1/1 - 1/100

= 99/100

b) 2/3.5+2/5.7+...+2/49.51

= 2 . ( 1/3.5 + 1/5.7 + ... + 1/49.51 )

= 2 . ( 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/50 )

= 2 . ( 1/3 - 1/50 )

= 2 . 47/150

= 47/75

24 tháng 4 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

= \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

= \(2\left(1-\frac{1}{100}\right)\)

 =\(2.\frac{99}{100}\)

 =\(\frac{99}{50}\)

12 tháng 3 2023

Gợi ý :  ''Cần Cù Thì Bù Siêng Năng '' nhé :)

12 tháng 3 2023

\(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)

\(A=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(A=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=2\left(1-\dfrac{1}{100}\right)\)

\(A=2.\dfrac{99}{100}\)

\(A=\dfrac{99}{50}\)

18 tháng 12 2016

Ta có a=1.2+2.3+3.4+...+99.100  

         b=12+22+32+...+992=1.1+2.2+3.3+4.4+...+99.99

         a-b=(1.2+2.3+3.4+...+99.100)-(1.1+2.2+3.3+...+99.99)=(1.2-1.1)+(2.3-2.2)+(3.4-3.3)+(99.100-99.99)

             =1+2+3+...+99

             =(99+1)+(98+2)+(97+3)+...+(49+51)+50

             =100.49+50

             =4950

             

18 tháng 12 2016

cảm ơn bạn nhiều

26 tháng 4 2022

bạn hãy rút gọn vế phải: x/200=1/2.2/3.3/4......98/99.99/100

  Rồi sẽ có cái phương trình:x/200=1/100

từ đó suy ra:x/200=2/200 =>x=2

:)))))

27 tháng 4 2022

\(\dfrac{x}{200}=\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{99^2}{99.100}\)

\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)

\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{100}\)

\(\Leftrightarrow x=2\)