Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
mk k vt lại đề nha
S=2.(1/1.2+1/2.3+1/3.4+............+1/99.100)
S=2.(1-1/2+1/3-1/4+1/4-1/5+.............+1/99-1/100)
S=2.(1-1/100)
S=2.99/100
S=198/100
S=\(\frac{2}{1.2}\)+\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{98.99}\)+\(\frac{2}{99.100}\)
S=\(\frac{2}{1}\).(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{98.99}\)+\(\frac{1}{99.100}\))
S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{98}\)-\(\frac{1}{99}\)+\(\frac{1}{99}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).(\(\frac{100}{100}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).\(\frac{99}{100}\)
S=\(\frac{99}{50}\)
Vậy S=\(\frac{99}{50}\)
\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =2\cdot\dfrac{99}{100}\\ =\dfrac{99}{50}\)
\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\left(1-\dfrac{1}{100}\right)=2\cdot\dfrac{99}{100}=\dfrac{99}{50}\)
A = 1.22 + 2.32 + 3.42 + …. + 99.1002
A= 1.2.2 + 2.3.3 + 3.4.4 +...+99.100.100
A= 1.2(3-1) +2.3(4-1) +3.4(5-1) +....+ 99.100(101-1)
A= 1.2.3 - 1.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 1.3.4 +...+99.100.101- 1.99.100
A= 1.2.3 + 2.3.4 + 3.4.5+....+99.100.101 - 1.2 +2.3 + 3.4+...+ 99.100
A= 24497550 - 333300
A=24164250
Vậy...
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(\frac{2}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{2}{49\cdot51}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=\frac{1}{3}-\frac{1}{51}\)
\(=\frac{16}{51}\)
a) 1/1.2+1/2.3+1/3.4+...+1/99.100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
b) 2/3.5+2/5.7+...+2/49.51
= 2 . ( 1/3.5 + 1/5.7 + ... + 1/49.51 )
= 2 . ( 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/50 )
= 2 . ( 1/3 - 1/50 )
= 2 . 47/150
= 47/75
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
= \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2\left(1-\frac{1}{100}\right)\)
=\(2.\frac{99}{100}\)
=\(\frac{99}{50}\)
\(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)
\(A=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(A=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=2\left(1-\dfrac{1}{100}\right)\)
\(A=2.\dfrac{99}{100}\)
\(A=\dfrac{99}{50}\)
Ta có a=1.2+2.3+3.4+...+99.100
b=12+22+32+...+992=1.1+2.2+3.3+4.4+...+99.99
a-b=(1.2+2.3+3.4+...+99.100)-(1.1+2.2+3.3+...+99.99)=(1.2-1.1)+(2.3-2.2)+(3.4-3.3)+(99.100-99.99)
=1+2+3+...+99
=(99+1)+(98+2)+(97+3)+...+(49+51)+50
=100.49+50
=4950
bạn hãy rút gọn vế phải: x/200=1/2.2/3.3/4......98/99.99/100
Rồi sẽ có cái phương trình:x/200=1/100
từ đó suy ra:x/200=2/200 =>x=2
:)))))