\(A=1^2+2^2+3^2+....+101^2\)

a, A là số chẵn hay lẻ ? Vì sao ?

b, 2A có...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

a,ta có dạng tổng quát : 1^2+2^2+...+n^2=n.(n+1).(2n+1)/6 nên A=101.(101+1).(2.101+1)/6
 Suy ra : A=348551 là số lẻ

b,2A=2.101.(101+1).(2.101+1)/6=348551.2

Suy ra 348551.2 có tận cùng là 1.2=2.Mà một số chính phương( hay bình phương) không thể có tận cùng là 2 nên 2A không là  bình phương của 1 số nguyên

4 tháng 4 2016

ko ta có

2+4+6+...+2n=2.1+2.2+2.3+2.4+...+2.n=2(1+2+3+4+..+n)=2.n(n+1):2=n(n+1)

27 tháng 12 2021

\(A=7+7^2+7^3+...+7^7+7^8\)

a) Lũy thừa với cơ số 7 có chữ số tận cùng là số lẻ

Mà A có 8 số hạng

Nên a là số chẵn (vì có 8 số có chữ số tận cùng là chữ số lẻ cộng lại)

b) Các chữ số tận cùng của 8 số hạng trên lần lượt là:

7; 9; 3; 1; 7; 9; 3; 1

\(\Rightarrow A\) có chữ số tận cùng là 0

\(\Rightarrow A⋮5\)

Cách 2:

a) Ta có:

\(A=7+7^2+7^3+...+7^7+7^8\) \(=6725600\) có chữ số tận cùng là 0 nên A là số chẵn

b) Do A có chữ số tận cùng là 0 nên A chia hết cho 5

13 tháng 10 2017

Đặt: \(k=\frac{a^2+b^2}{ab+1}\) , \(k\in Z\)

Giả sử, k không là số chính phương. 

Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu 

\(S=a,b\in NxN\)\(\frac{a^2+b^2}{ab+1}=k\)

Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+B đạt min 

Giả sử: \(A\ge B>0\). Cố định B ta còn số A thảo phương trình \(k=\frac{x+B^2}{xB+1}\)

\(\Leftrightarrow x^2-kBx+B^2-k=0\)phương trình có nghiệm là A.

Theo Viet: \(\hept{\begin{cases}A+x_2=kB\\A.x_2=B^2-k\end{cases}}\)

Suy ra: \(x_2=kB-A=\frac{B^2-k}{A}\)

Dễ thấy x2 nguyên.

Nếu x2 < 0 thì \(x_2^2-kBx_2+B^2-k\ge x_2^2+k+B^2-k>0\) vô lý. Suy ra: \(x_2\ge0\) do đó \(x_2,B\in S\)

Do: \(A\ge B>0\Rightarrow x_2=\frac{B^2-k}{A}< \frac{A^2-k}{A}< A\)

Suy ra: \(x_2+B< A+B\) (trái với giả sử A+BA+B đạt min) 

Suy ra kk là số bình phương

1 tháng 5 2019

26 quyển vở chiếm số phần là:

\(7-6=1\left(phần\right)\)

Số vở của An có là:

\(26.6=156\left(quyển\right)\)

Số vở của Hòa là:

\(156+26=182\left(quyển\right)\)

Số vở của Bình là:

\(154:4.3=117\left(quyển\right)\)

Lớp 6 nên ko có đáp số =))

22 tháng 5 2016

b)3S=3(1+3+32+33+...+32012)

3S=3+32+33+...+32013

3S-S=(3+32+33+...+32013)-(1+3+32+33+...+32012)

2S=32013-1

Vậy 2S ko fai số chính phương

22 tháng 5 2016

Nguyễn Huy Thắng Nhanh ha:)) Chưa kịp làm nữa

7 tháng 8 2019

O x y z m n t t'

Tự đánhgóc

Có xOy < xOz (40 < 120)

=> Oy nằm giữa Ox,Oz

=> xOy + yOz = xOz

=> yOz = 40o

Om là p/g xOy

=> mOx = mOy = xOy/2 = 20o

On là p/g xOz 

=> nOx = zOn = xOz/2 = 60o

Có xOm < xOn (20 < 60)

=> Om nằm giữa On và Ox

=> xOm + mOn = xOn

=> mOn = 40o

Có mOy < mOn ( 20<40)

=> Oy nằm giữa Om, On

=> mOy + yOn = mOn

=> yOn = 20o

Vì yOn = mOn = 20o

    Oy nằm giữa Om,On

=> Oy là p/g của mOn

8 tháng 8 2019

chetme làm vội quên câu cuối

c) Ot là tia đối tia Ox

=> tOn và xOn kề bù

=> tOn + nOx = 180o

=> tOn = 120o

Ot' là tia đối Oz 

=> zOn và t'On kề bù

=> zOn + t'On = 180o

=> t'On = 120o

=> t'On = tOn

18 tháng 6 2016

a) Với 7n là số lẻ với n \(\in\) N*

Mà tổng A có 8 số hạng đều là số lẻ

Do đó : A là số chẵn

b) Ta có

A = ( 7 + 73 ) + ( 72 + 74 ) + ( 75 + 77 ) + ( 76 + 78 )

    = 7 ( 1 + 72 ) + 72 ( 1 + 72 ) + 75 ( 1 + 72 ) + 76 ( 1 + 72 )

    = 7 . 50 + 72 . 50 + 75 . 50 + 76 . 50

    = 50 ( 7 + 72 + 75 + 76 )

Vì 50 \(\vdots\) 5 => A \(\vdots\) 5

c) Ta có :

A = 50 ( 7 + 72 + 75 + 76 ) = \(\overline{....0}\)

Vậy A có tận cùng là 0

 

19 tháng 6 2016

Ta có: A=7+72+73+74+75+76+77+78

=7+...9+...3+...1+...7+...9+...3+...1

=...0

Vì A có tận cùng là 0 nên A là số chẵn

Vì A có tận cùng là 0 nên A chia hết cho 5

Vây A có tận cùng là 0