Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b) Ta có: \(2A=2+2^2+2^3+2^4+...+2^{2008}\)
\(\Rightarrow A=2A-A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-...-2^{2007}=2^{2008}-1\)
Lời giải:
a.
$A=1+2^1+2^2+2^3+....+2^{2007}$
$2A=1.2+2^1.2+2^2.2+2^3.2+....+2^{2007}.2$
$2A=2+2^2+2^3+2^4+....+2^{2008}$
b.
$A=2A-A=(2+2^2+2^3+2^4+...+2^{2008})-(1+2+2^2+...+2^{2007})$
$=2^{2008}-1$ (đpcm)
P/s: Lần sau bạn chú ý viết đề bằng công thức toán.
Đề sai à
sửa đề
\(A=1+2+2^2+2^3+2^4+.....+2^{2008}\)
Chứng minh \(A=2^{2009}-1\)
Giải :
\(A=1+2+2^2+2^3+.....+2^{2008}\)
\(2A=2+2^2+2^3+...+2^{2009}\)
\(2A-A=2^{2009}-1\)
\(\Rightarrow A=2^{2009}-1\left(dpcm\right)\)
Study well
uk
đề sai ^^
Cho A = 1 + 2 + 22 + 23 + 24 +.....+22007
Chứng minh : A = 22008 - 1
bn sửa đề gần đúng =))))
thôi thì mơn nhoa
\(\frac{1+2+2^2+...+2^{2008}}{1-2^{2008}}\)
Ta có: Đặt A = 1 + 2 + 22 + ... + 22008
2A = 2 + 22 + 23 + ... + 22009
2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)
A = 22009 - 1
=> \(\frac{1+2+2^2+...+2^{2008}}{1-2^{2008}}=\frac{2^{2009}-1}{1-2^{2008}}\)
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
Lời giải:
a.
A=1+21+22+23+....+22007A=1+21+22+23+....+22007
2A=1.2+21.2+22.2+23.2+....+22007.22A=1.2+21.2+22.2+23.2+....+22007.2
2A=2+22+23+24+....+220082A=2+22+23+24+....+22008
b.
A=2A−A=(2+22+23+24+...+22008)−(1+2+22+...+22007)A=2A−A=(2+22+23+24+...+22008)−(1+2+22+...+22007)
=22008−1=22008−1 (đpcm)
a) Ta có :
A = 1 + 21 + 22 + ... + 22007
=> 2A = 2 . ( 1 + 21 + 22 + ... + 22007 )
=> 2A = 21 + 22 + 23 + ... + 22008
b) Ta có : 2A = 21 + 22 + 23 + ... + 22008 ( phần a )
Mà A = 1 + 21 + 22 + ... + 22007
=> 2A - A = ( 21 + 22 + 23 + ... + 22008 ) - ( 1 + 21 + 22 + ... + 22007 )
=> A = 22008 - 1
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
Xét B = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
=\(1-\frac{1}{2018}\)
Xét : \(\frac{2018}{2018}=1\)=) B < 1
khoan hình như sai đề
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=1-\frac{1}{2008}< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\) (đpcm)
A = 1 + 2 + 22 + ... + 22007
= 1 + ( 2 + 22 + ... + 22007 )
Đặt B = 2 + 22 + ... + 22007
=> 2B = 2( 2 + 22 + ... + 22007 )
= 22 + 23 + ... + 22008
=> B = 2B - B
= 22 + 23 + ... + 22008 - ( 2 + 22 + ... + 22007 )
= 22 + 23 + ... + 22008 - 2 - 22 - ... - 22007
= 22008 - 2
=> B = 22008 - 2
Thế vào A ta được
A = 1 + 22008 - 2 = 22008 - 1
=> đpcm