Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}<1\)
\(=>B<1\)
Vậy B không là số tự nhiên
Mình biết Hà Trang xem sách giải trong sách Nâng cao và phát triển toán 6 không qua được mắt mình đâu
a)Vì 3 có tận cùng là 3 , 3 2 có tận cùng là 9 ..... ,3 20 có tận cùng là 1.
Tổng các chữ số tận cùng là: 3+9+7+1+3+...+1=100 =10 2 .
Vậy A là số chính phương.
b) B=11+112+113
B=11+121+1331
=1463
B có tận cùng là 3 nên ko phải là số chính phương
Câu 1
A = ab - ba
= (10a + b) - (10b + a)
= 10a + b - 10b -a
= 9a - 9b
= 9(a-b) : hết cho 9
Vậy...
các bn giải giúp mình bài này đi mình đang cần rất gấp giải hết 4 bài lun nha
Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)(1)
Ta lại có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
=> \(a\left(a+b+c\right)< \left(a+c\right)\left(a+b\right)\)
<=> 0<bc( đúng)
CMTT: \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\), \(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng lại ta được \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(2)
Từ (1) và (2) => Tổng đó \(\notin Z\)
Đặt \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 2\)
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^3}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
.........
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1+1-\frac{1}{50}\)
\(A< 2-\frac{1}{50}\) . Vậy A < 2