K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{63^2}>\dfrac{1}{63\cdot64}=\dfrac{1}{63}-\dfrac{1}{64}\)

Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{63^2}>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{63}-\dfrac{1}{64}\)

=>\(A>\dfrac{1}{2}-\dfrac{1}{64}>\dfrac{1}{2}\)

3 tháng 4 2022

1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4x1/8=1/2
1/9+…+1/16>8x1/16=1/2
1/2+1/3+1/4+…+1/16>4x1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
suy ra: 1/2+1/3+1/4+…+1/63>2

a: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2014}\cdot\left(1+3\right)\)

\(=4\cdot\left(1+3^2+...+3^{2014}\right)⋮4\)

b: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2013}\left(1+3+3^2\right)\)

\(=13\cdot\left(1+3^3+...+3^{2013}\right)⋮13\)

23 tháng 2 2017

k mình nha

mình ko giải đâu dài dòng lắm

23 tháng 2 2017

1/2+1/3+1/4+...+1/63>1/31+1/31+1/31...+1/31( 62 số hạng 31)

hay 1/2+1/3+1/4+...+1/63>62 x 1/31

nên 1/2+1/3+1/4+...+1/63>2(dpcm)

k ủng hộ nha