Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
=> \(A< \frac{3}{4}\left(đpcm\right)\)
Bạn trình bày bình thương đừng dừng bằbg kí hiệu gì đó dc kg vì mik vào bằng đt
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}< 1< 2\)
A = \(3^1+3^2+3^3+...+3^{60}\)
A = 3 ( 1 + 3 ) + \(3^3\left(1+3\right)\)+ ..... + \(3^{59}\left(1+3\right)\)
A = 3 . 4 + \(3^3.4\) + ..... + \(3^{59}.4\)
A = 4 ( \(3+3^3+....+3^{59}\)) chia hết cho 4
Vậy A = \(3^1+3^2+3^3+...+3^{60}\)chia hết cho 4
Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}$
$< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}$