K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}$
$< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}$

2 tháng 9 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

=> \(A< \frac{3}{4}\left(đpcm\right)\)

2 tháng 9 2016

Bạn trình bày bình thương đừng dừng bằbg kí hiệu gì đó dc kg vì mik vào bằng đt

10 tháng 5 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}< 1< 2\)

10 tháng 11 2018

A = \(3^1+3^2+3^3+...+3^{60}\)

A = 3 ( 1 + 3 ) + \(3^3\left(1+3\right)\)+  ..... + \(3^{59}\left(1+3\right)\)

A = 3 . 4 + \(3^3.4\) +   ..... + \(3^{59}.4\)

A = 4 ( \(3+3^3+....+3^{59}\)) chia hết cho 4 

Vậy A = \(3^1+3^2+3^3+...+3^{60}\)chia hết cho 4

10 tháng 11 2018

Thăm Tuy Thăm Tuy làm đúng r mà

k bn ấy nha