K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

21 tháng 2 2021

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

14 tháng 5 2018

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\)

\(\Rightarrow A=B\left(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow\frac{A}{B^{2018}}=\frac{A}{A.B^{2017}}=\frac{1}{B^{2017}}\)

=> \(\frac{A}{B^{2018}}=\frac{1}{\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)^{2017}}\)

9 tháng 5 2019

\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)

23 tháng 4 2017

Ta có: \(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=1+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)\)

\(=\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2018}\)

\(=2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

Giờ ta thế vào bài toán ban đầu được

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

\(=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}\)

\(=\frac{2017}{2018}\)  

1 tháng 4 2017

D = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ... . ( 1 - 1/2017 )

D = ( 0/2 ) . ( 0/3 ) . ( 0/4 ) . ... . ( 0/2017 )

D = 0 . 0 . 0 . ... . 0

D = 0

1 tháng 4 2017

(1-1/2)x(1-1/3)x91-1/4)x..........x(1-2017)

=1/2x2/3x3/4x........x2015/2016x2016/2017

=1x2x3x4x.................x2015x2016/2x3x4x5x.........x2016x2017

(Gạch bỏ những chữ số giống nhau)

=1/2017

30 tháng 4 2017

a) - 10 b) - 1009

26 tháng 8 2016

a)số số hạng

 (2017−1):3+1=673

Tổng trên là :

 (2017−1)×673:2=678384

9 tháng 5 2017

mik chỉ biết trả lời 

số các số hạng là: (2017-1) :3= 673

tổng trên là (2017-1)*673:2=678384

;