K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Đặt A = -1-1/2-1/4-.....-1/1024

= -(1+1/2+1/4+.....+1/1024)

= -(1+1/2+1/2^2+.....+1/2^10)

2A = -(2+1+1/2+....+1/2^9)

A=2A-A= -(2+1+1/2+....+1/2^9-1-1/2-.....-1/2^10) = -(2-1/2^10) = -2047/1024

Tk mk nha

ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)

\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

tách

\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)

\(2B-B=\frac{1}{2}-\frac{1}{1024}\)

thay vào B ta có 

\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)

17 tháng 7 2019

\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)

\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)

\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)

\(\Rightarrow A=\frac{513}{1024}\)

27 tháng 12 2020

\(\frac{1}{3}.\frac{3}{5}+\frac{4}{5}.\frac{1}{3}+\frac{1}{3}.\frac{8}{5}\)

\(=\frac{1}{3}.\left(\frac{3}{5}+\frac{4}{5}+\frac{8}{5}\right)\)

\(=\frac{1}{3}.3\)

\(=1\)

Linz

16 tháng 9 2017

Ta có : \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-.....-\frac{1}{1024}\)

\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

Đặt  \(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\)

=> \(2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{512}\)

=> \(2A-A=\frac{1}{2}-\frac{1}{1024}\)

Thay A vào ta có : \(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)

16 tháng 9 2017

Jenny123 tham khảo nhé

Đặt tổng trên là A, ta có:

\(A.2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(A.2-A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{512}-"\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\)

\(\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}"\)

\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}-\frac{1}{256}-\frac{1}{512}-\frac{1}{1024}\)

\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)

P/s: Bn xem lại đề nha

24 tháng 11 2021

Kết quả của phép tính \(\frac{2}{3}+\frac{-1}{6}\)

\(\frac{2}{3}+\frac{-1}{6}\)

\(=\)\(\frac{4}{6}+\frac{-1}{6}\)

\(=\)\(\frac{3}{6}=\frac{1}{2}\)

Vậy chọn đáp án \(a.\frac{1}{2}\)

30 tháng 5 2015

(-2)[-1/(1/2)][-1/(1/3)]...[-1/(1/2010...=2.(-1)(-2)(-3)...(-2010) có 2010 thừa số âm (chẵn thừa số âm (chẵn thừa số âm )=>tich dương .

(-2)[-1/(1/2)[-1/(1/3)]....[-1/(1/2010...=2.1.2.3.......2010=2.2010 !

1 tháng 1 2016

2.2010 ban oi