![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Đặt \(A=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)
\(A=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
\(A=\dfrac{1}{3}-\dfrac{1}{12}\)
\(A=\dfrac{1}{4}\)
b)Đặt \(B=\dfrac{1}{501}+\dfrac{1}{502}+...+\dfrac{1}{1000}\)(có 500 số hạng)
\(B< \dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)(có 500 số hạng)
\(B< 500\cdot\dfrac{1}{500}=1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=\(\frac{\left(49+1\right).49}{2}=1225\)
B/3=4100/3=1336,6666666666666....
Từ trên ta suy ra A<B/3
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có: \(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
......
\(\frac{1}{99}>\frac{1}{100}\)
Công vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) (1)
Lại có: \(\frac{1}{51}< \frac{1}{50}\)
\(\frac{1}{52}< \frac{1}{50}\)
.....
\(\frac{1}{100}< \frac{1}{50}\)
Cộng vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{50}{50}=1\) (2)
Từ (1)(2) => \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\) (đpcm)
Bài 2:
Đặt S = 1/41 + 1/42 +...+ 1/80
S có 40 số hạng,chia thành 4 nhóm,mỗi nhóm có 10 số hạng
Ta có:S = \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\) + \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)+ \(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)+ \(\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)
=> S > \(\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)
=> S > \(\frac{10}{50}+\frac{10}{60}+\frac{10}{70}+\frac{10}{80}\)
=> S > \(\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)
Vậy \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{7}{12}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
nhân xét : 1/20<1;1/30<1;1/42<1
=>1/20+1/30+1/42<1
vậy.....
A = 1/20 + 1/30 + 1/42
A = 1/4x5 + 1/5x6 + 1/6x7
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
A = 1/4 - 1/7
A = 3/28
Mà 1 = 28/28
Nên 3/28 < 28/28
Vậy A < 1