Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}\)
\(=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}\)
\(=\left(2\sqrt{3}-9\sqrt{15}\right)\sqrt{3}\)
\(=6-9\sqrt{45}\)
\(a.\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}=2.3-9\sqrt{9.5}=6-27\sqrt{5}\) \(b.\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{36.7}-\sqrt{100.7}+\sqrt{144.7}-\sqrt{64.7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
Bài 3:
b: Ta có: \(\sqrt{x^2-2x+1}=\left|x-2\right|\)
\(\Leftrightarrow\left|x-1\right|=\left|x-2\right|\)
\(\Leftrightarrow x-1=2-x\)
\(\Leftrightarrow2x=3\)
hay \(x=\dfrac{3}{2}\)
Bài 4: ĐK: x>0
a) \(B=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{x}\left[\left(\sqrt{x}\right)^3+1\right]}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)
\(\Leftrightarrow B=\sqrt{x}.\left(\sqrt{x}+1\right)-2\sqrt{x}=x+\sqrt{x}-2\sqrt{x}\)
\(\Leftrightarrow B=x-\sqrt{x}\)
Vậy với x>0 thì \(B=x-\sqrt{x}\)
b) Ta có: \(B=2\)
\(\Leftrightarrow x-\sqrt{x}=2\)
\(\Leftrightarrow x-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}.\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
Do \(\sqrt{x}+1>0\) nên, ta suy ra:
\(\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\) \(\left(TMĐK\right)\)
Vậy \(x=4\) thì \(B=2\)
Lời giải:
Lần sau bạn nhớ ghi đầy đủ đề. $ABC$ là tam giác vuông tại $A$.
$\frac{AB}{AC}=\frac{3}{4}$
$\Rightarrow AC=\frac{4AB}{3}=\frac{4.15}{3}=20$ (cm)
Áp dụng định lý Pitago:
$y=BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25$ (cm)
$S_{ABC}=AB.AC:2=AH.BC:2$
$\Rightarrow AB.AC=AH.BC$
$\Rightarrow x=AH=\frac{AB.AC}{BC}=\frac{15.20}{25}=12$ (cm)
a: Thay x=0 và y=5 vào (d), ta được:
(m-2)x0+m=5
=>m=5
c: Để hai đườg song song thì m-2=2
hay m=4
a) Có: `1+tan^2a=1/(cos^2a)`
`<=> 1+(3/5)^2=1/(cos^2a)`
`=> cosa=\sqrt10/4`
`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`
b) Có: `sin^2a + cos^2a=1`
`<=> sin^2a + (1/4)^2=1`
`=> sina=\sqrt15/4`
`=> tana = (sina)/(cosa) = \sqrt15`
Má ơi,tính sai:
a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)
b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)
Bài 15:
a) Ta có: \(A=\cos^252^0\cdot\sin45^0+\sin^252^0\cdot\cos45^0\)
\(=\dfrac{\sqrt{2}}{2}\left(\sin^252^0+\cos^252^0\right)\)
\(=\dfrac{\sqrt{2}}{2}\)
b) Ta có: \(B=\tan60^0\cdot\cos^247^0+\sin^247^0\cdot\cot30^0\)
\(=\sqrt{3}\cdot\left(\sin^247^0+\cos^247^0\right)\)
\(=\sqrt{3}\)
Bài 17:
c) Ta có: \(C=\tan1^0\cdot\tan2^0\cdot\tan3^0\cdot\tan4^0\cdot...\cdot\tan89^0\)
\(=\left(\tan1^0\cdot\tan89^0\right)\cdot\left(\tan2^0\cdot\tan88^0\right)\cdot...\cdot\tan45^0\)
\(=1\cdot1\cdot...\cdot1=1\)
1, \(\left\{{}\begin{matrix}4x+2y=24\\7x-2y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=55\\y=12-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
2, thiếu đề
4, \(\left\{{}\begin{matrix}4x-y-24=10x-4y\\3y-2=4-x+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\x+2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\-6x-12y=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15y=60\\x=6-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)
a: \(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
\(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
=0
b: \(\left(\sqrt{12}-3\sqrt{15}-4\sqrt{135}\right)\cdot\sqrt{3}\)
\(=\left(2\sqrt{3}-3\sqrt{15}-12\sqrt{15}\right)\cdot\sqrt{3}\)
\(=6-45\sqrt{5}\)
em đang cần gấp ai đó giúp em với ạ