Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của tổng B là:
\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)
\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)
\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)
\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)
Số số hạng của tổng A thuộc nguyên âm là:
\(\frac{2014}{2}=1007\)(số hạng)
\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)
\(A=\left(-2029105\right)+4060225\)
\(A=2031120\)
Mà \(2031120=2031120\)
\(\Rightarrow A=B\)
\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)
\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)
\(A=1+2+3+4+...+2015=B\)
A=2012x2014=2012x(2012+2)=2012^2+4024
B=2013^2=(2012+1)^2=2012^2+2x2012+1=2012^2+2025
=>A<B
chúc bạn học tốt~~~
Bài 1 :
\(a)\)\(A=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013^2-1< 2013^2=B\)
Vậy \(A< B\)
\(b)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(2A=3^{32}-1\)
\(A=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
\(c)\)\(A=2017^2-17^2=\left(2017-17\right)\left(2017+17\right)=2000.2034>2000.2000=2000^2=B\)
Vậy \(A>B\)
\(C=\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(2013^2-2014^2\right)+2015^2\)
\(C=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(2013-2014\right)\left(2013+2014\right)+2015^2\)
\(C=-\left(1+2\right)-\left(3+4\right)-....-\left(2013+2014\right)+2015^2\)
\(C=-\left(1+2+3+4+...+2014\right)+2015^2\)
\(C=-\dfrac{\left(2014+1\right)2014}{2}+2015^2\)
\(C=-2015.1007+2015^2\)
\(C=2015\left(2015-1007\right)=2015.1008\)
Bài 1.
[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >
= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2
Đặt t = x - y
bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2
= 4t5 : t2 + 2t3 : t2 - 3t2 : t2
= 4t3 + 2t - 3
= 4( x - y )3 + 2( x - y ) - 3
Bài 2.
5x( x - 2 ) + 3x - 6 = 0
⇔ 5x( x - 2 ) + 3( x - 2 ) = 0
⇔ ( x - 2 )( 5x + 3 ) = 0
⇔ x - 2 = 0 hoặc 5x + 3 = 0
⇔ x = 2 hoăc x = -3/5
Bài 3.
A = x2 - 6x + 2023
= ( x2 - 6x + 9 ) + 2014
= ( x - 3 )2 + 2014 ≥ 2014 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinA = 2014 <=> x = 3
Bài 4.
B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )
= [ ( 3x + 5 ) - ( 3x - 5 ) ]2
= ( 3x + 5 - 3x + 5 )2
= 102 = 100
Vậy B không phụ thuộc vào x ( đpcm )
Bài 6.
C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152
= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1
= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1
= 4029 + ... + 9 + 5 + 1
= \(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)
= 2 031 120
Ta có: 12-22+32-............+20152
C=20152-20142+...............+32-22+12
C=(2015+2014)(2015-2014)+(2013+2012)(2013-2012)+...........+(3+2)(3-2)+12
C=2015+2014+2013+.........+3+2+12=2015+2014+2013+............+1
C=2016.2015:2
C=1008.2015
C=??????? bạn tự dùng máy tính
(Mình giải theo cách lớp 8 nhé)
\(A=1^2-2^2+3^2-4^2+...+2015^2\)
\(=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(=1+\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2015-2014\right)\left(2015+2014\right)\)
\(=1+\left(2+3\right)+\left(4+5\right)+...+\left(2014+2015\right)\)
\(=1+2+3+...+2015=B\)
\(\Leftrightarrow A=B\)