K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

Bài 1:

13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)

13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)

13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp

 

16 tháng 8 2023

Bài 2:

1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)

100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)

1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)

107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)

11 + 112 + 113 = \(\overline{..1}\)\(\overline{..1}\)\(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)

 

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Lời giải:
$C=1-2+2^2-2^3+2^4-....+2^{2022}$

$2C=2-2^2+2^3-2^4+2^5-...+2^{2023}$

$\Rightarrow C+2C=(1-2+2^2-2^3+2^4-....+2^{2022})+(2-2^2+2^3-2^4+2^5-...+2^{2023})$

$\Rightarrow 3C=2^{2023}-1$

$\Rightarrow C=\frac{2^{2023}-1}{3}$

30 tháng 9 2021

A=\(2^2-9^3+4^{-2}.16-2.5^2\)
\(=4-729+1-50=-774\)
B=\(\left(2^3.2\right).\dfrac{1}{2}+3^{-2}.3^2-7.1+5\)
\(B=2^4.\dfrac{1}{2}+1-7+5=8+1-7+5=7\)
 

16 tháng 8

 C = 2-3 + (52)3.5-3 + 4-3.16 - 2.32 - 105.(\(\dfrac{24}{51}\))0

C =  \(\dfrac{1}{8}\) + 56.5-3 + 4-3.42 - 2.9 - 105.1

C =  \(\dfrac{1}{8}\) + 53\(\dfrac{1}{4}\) - 18 - 105

C =  (\(\dfrac{1}{8}\) + \(\dfrac{1}{4}\))  - (105 - 125 + 18)

C = \(\dfrac{3}{8}\) - (-20 + 18)

C = \(\dfrac{3}{8}\)  + 2

C = \(\dfrac{19}{8}\)

E=1-2-3+4+5-6-7+8+...+21-22-23+24

=0+0+...+0

=0.12

=0

22 tháng 7 2016

E = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 21 - 22 - 23 + 24 (có 24 số; 24 chia hết cho 4)

E = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (21 - 22 - 23 + 24)

E = 0 + 0 + ... + 0

E = 0

21 tháng 10 2018

\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)

\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)

\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)

\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)

\(M=1-\frac{1}{2010^2}< 1\)

Vậy \(M< 1\)

Chúc bạn học tốt ~ 

15 tháng 5 2016

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

1 tháng 1 2020

A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{23.24.25}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)

\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{24.25}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{600}\right)=\frac{1}{2}.\frac{299}{600}=\frac{299}{1200}\)