K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

Sr cậu Đoàn Thục Quyên  nha , đang làm tìm số cuối thì lú mất KL ra là tổng

Cái dòng KL sai r nhé cậu

Còn nguyền phần trên đúng rồi

Cậu thay dòng KL là :

Vậy : chứ số cuối của tổng trên là 5

#hoc_tot#

3 tháng 5 2020

Ta dễ dàng nhận ra các số trên đều có dạng : 4k + 1

\(1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\left(.....1\right)+\left(.....2\right)+........+\left(.....4\right)+\left(......5\right)\)

Ta thấy  : tổng A có 50 nhóm và thừa 5 số hạng cuối

=> Chữ số tận cùng của 50 là : 

50 = 10 . 5 ( có chứa 10 )

=> Tổng của 50 nhóm đó là 0

=> Tổng 5 số hạng cuối là : 5

Vậy : tổng trên = 5

28 tháng 12 2021

Ta có :

\(A=1+2^5+4^{13}+.....+504^{2013}+505^{2017}\)

\(A=1^{4.0+1}+2^{4.1+1}+3^{4.2+1}+....+505^{4503+1}+505^{4504+1}\)

Gọi các số nhân lên cùng 4 ở hàng số mũ là x

Xét các mũ ,ta có :

Chữ số tận cùng A sẽ là tổng của :

\(1+2+3+...+504+505\)

\(=\dfrac{\left(505+1\right).505}{2}=\dfrac{255530}{2}=127765\)

Tổng đó có chữ số tận cùng là 5

⇒⇒ Chữ số tận cùng của A là 5

Vậy chữ số tận cùng của A là 5

 

28 tháng 12 2021

cảm ơn bạn nhìu:)))

26 tháng 12 2018

Dễ thấy mọi số mũ đều có dạng 4k+1

=> \(1+2^5+3^9+4^{13}+........+504^{2013}+505^{2017}=\left(....1\right)+\left(.....2\right)+..........+\left(...4\right)+\left(....5\right)\)

chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là:

50=10.5 có chứa thừa số 10

nên cstc của 50 nhóm là: 0

cstc của của 5 số hạng cuối là: 5

=> A có tc là: 5

26 tháng 12 2018

Cảm ơn shitbo nhiều !!!

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

26 tháng 11 2019

Dễ thấy mọi số mũ đều có dạng 4k+1

\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)

Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là 

50=10*5 có chứa thừa số 10

nên cstc của 50 nhóm là 0

cstc của 5 số hạng cuối là 5

=> A có tận cùng là 5

Nguồn:Shitbo

26 tháng 11 2019

a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)

\(\Rightarrow a+74=17p+85⋮17\)

a khi chia cho 23 dư 18 suy ra a có dạng 

\(23q+18\Rightarrow a+74=23q+92⋮23\)

a khi chia cho 11 dư 3 suy ra a có dạng 

\(11r+3\Rightarrow a+74=11r+77⋮11\)

\(\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(\Rightarrow a+74=4301k\)

\(\Rightarrow a+74-4301=4301k-4301\)

\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327

9 tháng 5 2019

a) Ta có:

a=17k+11⇒a+74=17k+85⋮17

a=23t+18⇒a+74=23t+92⋮23

a=11m+3⇒a+74=11m+77⋮11

Từ đó ta có: a+74∈ BC(17;23;11)

BCNN(17;23;11)=17.23.11=4301

➞a+74∈ B(4301)

⇒a+74=4301q (q∈N*)

⇒a+74-4301=4301q-4301

⇒a-4227=4301(q-1)⇒a=4301(q-1)+4227

Vậy a khi chia cho 4301 thì dư 4227.

b) Nhận xét: số mũ của các số hạng có dạng 4k+1(k∈N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1+2+3+...+505

Vậy chữ số tận cùng của A là 5