Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)
Tính
A=-1-1/2×(1+2)-1/3×(1+2+3)-...-1/101+(1+2+3+...+101)
Giải giúp mình nhé mai mình phải nộp bài rồi
1/2-1/4+1/8-1/16+1/32-1/64=0,32...
1/3=0,333....
Vì: 0,32...< 0,33...=>1/2-1/4+1/8-1/16+1/32-1/64 < 1/3
theo mình nghĩ là như th61 này
\(2\cdot2^{99}-2^{99}=2^{99}\)
\(2^{99}=2\cdot2^{98}\)
\(2\cdot2^{98}-2^{98}=2^{98}\)
vậy tức là \(2^n-2^{n-1}=2^{n-1}\)
đến cuối bạn sẽ có \(2^3-2^2=4\)
4-2-1=1