Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
a) = 29/15
b) = 7/15
c) = 1
d) = 3
e) = 67/17
f) = 2
mk nhanh nhất tk cho mk nha
a/\(\frac{3}{5}+\frac{4}{3}=\frac{9}{15}+\frac{20}{15}=\frac{29}{15}\)
b/\(\frac{2}{3}-\frac{1}{5}=\frac{10}{15}-\frac{3}{15}=\frac{7}{15}\)
c/\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{7}{6}\)
d,\(\frac{3}{5}+\frac{4}{7}+\frac{7}{5}+\frac{3}{7}=\left(\frac{3}{5}+\frac{7}{5}\right)+\left(\frac{4}{7}+\frac{3}{7}\right)=2+1=3\)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
a)\(2-3+5-7+9-11+13-15+17=\left(2+5+9+13+17\right)-\left(3+7+11+15\right)\)
\(=46-36=10\)
b)\(\frac{1}{1.2}+\frac{1}{2.3}+...............+\frac{1}{8.9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.................+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{1}-\frac{1}{9}=\frac{9}{9}-\frac{1}{9}=\frac{8}{9}\)
Áp dụng \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Chúc bạn học tốt
Đề là tính bằng cách hợp lý đúng ko bạn
a, 2-3+5-7+9-11+13-15+17
= (5+13) - (3+15) + (2+9-11) + (17-7)
= 18 - 18 + 0 +10
= 10
b, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
a) 2/8+5/15+9/12+4/6
=1/4+1/3+3/4+2/3
=(1/4+3/4)+(1/3+2/3)
=1 + 1
=2
b) 1/2+1/4+1/8+1/16
=8/16+4/16+2/16+1/16
=15
c) 1/3-1/4+2/3
=4/12-3/12+8/12
=3/4
d) 1/2-1/3+1/4-1/6
=(1/2-1/4) + (1/3-1/6)
=(2/4-1/4)+(2/6-1/6)
=1/4+1/6
=6/24+4/24
=5/12
k cho mình nha
1. \(11\frac{2}{9}+8\frac{3}{5}+8\frac{7}{9}+1\frac{2}{5}\)
\(=\frac{101}{9}+\frac{43}{5}+\frac{79}{9}+\frac{7}{5}\)
\(=\left(\frac{101}{9}+\frac{79}{9}\right)+\left(\frac{43}{5}+\frac{7}{5}\right)\)
\(=20+10\)
\(=30\)
\(4\frac{2}{3}+5\frac{1}{2}+\frac{1}{3}+4\frac{1}{2}\)
\(=\frac{14}{3}+\frac{11}{2}+\frac{1}{3}+\frac{9}{2}\)
\(=\left(\frac{14}{3}+\frac{1}{3}\right)+\left(\frac{11}{2}+\frac{9}{2}\right)\)
\(=5+10\)
\(=15\)
Phần c bạn làm tương tự .
2. Đổi : \(2\frac{3}{4}m=\frac{11}{4}m=275m;1\frac{1}{2}m=\frac{3}{2}m=150m\)
Chiều rộng hình chữ nhật đó là :
275 - 150 = 125 ( m )
Chu vi hình chữ nhật đó là :
( 275 + 125 ) x 2 = 800 ( m )
Diện tích hình chữ nhật đó là :
275 x 125 = 34 375 ( m2 )
Đ/S : ...
bài 1:
a,11 2/9 + 8 7/9 + 1 2/5
=(11 2/9 + 8 7/9) + (8 3/5 + 1 2/5)
=20 + 10
=30.
b,4 2/3 + 5 1/2 + 1/3 + 4 1/2
=(4 2/3 + 1/3)+(5 1/2 + 4 1/2)
=5 + 10
=15.
c,19 2/7 + 5 3/4 + 4 1/4 - 9 2/7
=(19 2/7 - 9 2/7) + (5 3/4 + 4 1/4)
=10 + 10
=20.
bài 2:
2 3/4m = 275m
1 1/2m = 150m
Chiều rộng hình chữ nhật là:
275 - 150 = 125 (m)
Chu vi hình chữ nhật là:
(275+125)*2=800(m)
Diện tích hình chữ nhật là:
125 * 275 = 34375 (m)
Đáp số: 34375 m.
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) +...+ \(\dfrac{1}{1+2+3+...+9}\)
A = \(\dfrac{1}{\left(2+1\right)\times2:2}\)+ \(\dfrac{1}{\left(1+3\right)\times3:2}\)+...+ \(\dfrac{1}{\left(1+9\right)\times9:2}\)
A = \(\dfrac{2}{2\times\left(1+2\right)}\)+ \(\dfrac{2}{3\times\left(1+4\right)}\)+...+ \(\dfrac{2}{9\times\left(1+9\right)}\)
A = \(\dfrac{2}{2\times3}\) + \(\dfrac{2}{3\times4}\)+....+ \(\dfrac{2}{9\times10}\)
A = 2 \(\times\)( \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{9\times10}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\))
A = 2 \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{10}\))
A = 2 \(\times\) \(\dfrac{2}{5}\)
A = \(\dfrac{4}{5}\)