Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
=1-1/20
=19/20
M =1/1.2+1/2.3+1/3.4+.......+1/2019.2020
=1-1/2+1/2-1/3+1/3-1/4+.......-1/2019+1/2019-1/2020
=1-1/2020
=2019/2020
Ta có A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
1/1.2+1/2.3+1/3.4+...+1/99.100
= 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=100/100-1/100
=99/100
Ta có: 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/99.100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
= 1 - 1/100
= 99/100
Đúng 100%
Không tìm thấy A=1/1.2 + 1/2.3 + 1/3.4+......+1/2019.2060 trong tài liệu nào.
Ðề xuất:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2019\cdot2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}=\frac{2019}{2020}\)