Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2018^{2018}=2018^2.\left(2018^4\right)^{504}=\left(\overline{...4}\right).\left(\overline{...6}\right)=\overline{...4}\)
\(2019^{2019}=2019.\left(2019^2\right)^{1009}=2019.\left(\overline{...1}\right)=\overline{...9}\)
Để \(x⋮10\) thì \(\left(\overline{...4}\right)+\left(\overline{...9}\right)+m⋮10\)
\(\Rightarrow\left(\overline{...3}\right)+m⋮10\)
\(\Rightarrow\)m là số tự nhiên có tận cùng là 7
Mà m nhỏ nhất nên m = 7
Vậy m = 7.
b: x=ƯCLN(112;200)=8
a: x chia hết cho 8;12;30
nên \(x\in BC\left(8;12;30\right)=B\left(120\right)\)
mà 300<=x<=450
nên x=360
Ta xét riêng tử số:
\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+......+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1\times99}+\frac{100}{3\times97}+\frac{100}{5\times95}+......+\frac{100}{49\times51}\)
\(=100\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Bây giờ xét đến mẫu số:
\(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=\frac{2}{1\times99}+\frac{2}{3\times97}+\frac{2}{5\times95}+......+\frac{2}{49\times51}\)
\(=2\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Vậy giá trị của biểu thức là: \(\frac{100}{2}=50\)
Bài 5:
3xy+6x=1-y
=>\(3x\left(y+2\right)-1+y=0\)
=>\(3x\left(y+2\right)+y+2-3=0\)
=>\(3x\left(y+2\right)+\left(y+2\right)=3\)
=>(y+2)(3x+1)=3
=>\(\left(3x+1\right)\cdot\left(y+2\right)=1\cdot3=3\cdot1=\left(-1\right)\cdot\left(-3\right)=\left(-3\right)\cdot\left(-1\right)\)
=>\(\left(3x+1;y+2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(3x,y\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(-2;-5\right);\left(-4;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;1\right);\left(\dfrac{2}{3};-1\right);\left(-\dfrac{2}{3};-5\right);\left(-\dfrac{4}{3};-3\right)\right\}\)
mà x,y nguyên
nên \(\left(x,y\right)\in\left(0;1\right)\)
Bài 2:
a: \(3\left(2x+1\right)-6=27\)
=>\(3\left(2x+1\right)=33\)
=>\(2x+1=\dfrac{33}{3}=11\)
=>2x=11-1=10
=>\(x=\dfrac{10}{2}=5\)
b: \(5+3^{x+1}+2\cdot3^{x+2}=194\)
=>\(5+3^x\cdot3+2\cdot3^x\cdot9=194\)
=>\(21\cdot3^x=189\)
=>\(3^x=9\)
=>x=2
c: \(\left(x^3+8\right)\left(x^2-4\right)=0\)
=>\(\left[{}\begin{matrix}x^3+8=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^3=-8\\x^2=4\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-2\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow x\in\left\{2;-2\right\}\)
d: \(3x-2⋮x-3\)
=>\(3x-9+7⋮x-3\)
=>\(7⋮x-3\)
=>\(x-3\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{4;2;10;-4\right\}\)
Bài 3:
Gọi số học sinh khối 6 là x(bạn)
(Điều kiện: \(x\in Z^+\))
\(15=3\cdot5;20=2^2\cdot5;25=5^2\)
=>\(BCNN\left(15;20;25\right)=5^2\cdot3\cdot2^2=300\)
Vì số học sinh khi xếp hàng 15;20;25 đều thiếu 2 người
nên ta có: \(x+2\in BC\left(15;20;25\right)\)
=>\(x+2\in B\left(300\right)\)
=>\(x+2\in\left\{300;600;...\right\}\)
=>\(x\in\left\{298;598;...\right\}\)
mà x<400
nên x=298(nhận)
Vậy: Khối 6 có 298 bạn
Bài 1
a) \(-452-\left(-67+75-452\right)\)
\(=-452+67-75+452\)
\(=\left(-452+452\right)+\left(67-75\right)\)
\(=0-8\)
\(=-8\)
b) \(61.64+32.\left(-7\right)+15.\left(-32\right)\)
\(=61.32.2-32.7-32.15\)
\(=32.\left(61.2-7-15\right)\)
\(=32.\left(122-22\right)\)
\(=32.100\)
\(=3200\)
c) \(\left(-3\right)^2.125.11.\left(-2\right)^3\)
\(=9.125.11.\left(-8\right)\)
\(=\left(9.11\right).\left[125.\left(-8\right)\right]\)
\(=99.\left(-1000\right)\)
\(=-99000\)
d) \(2353-\left(473+2353\right)+\left(-55+373\right)\)
\(=2353-473-2353-55+373\)
\(=\left(2353-2353\right)-\left(473-373\right)-55\)
\(=0-100-55\)
\(=-155\)
Bài 1:
a: \(-452-\left(-67+75-452\right)\)
\(=-452+67-75+452\)
\(=\left(-452+452\right)+\left(67-75\right)\)
=-8+0
=-8
b: \(61\cdot64+32\left(-7\right)+15\left(-32\right)\)
\(=61\cdot64+32\left(-15-7\right)\)
\(=32\left(2\cdot61-22\right)=32\cdot100=3200\)
c: \(\left(-3\right)^2\cdot125\cdot11\cdot\left(-2\right)^3\)
\(=9\cdot125\cdot11\cdot\left(-8\right)\)
\(=\left(-8\cdot125\right)\cdot\left(9\cdot11\right)\)
\(=-99\cdot1000=-99000\)
d: \(2353-\left(473+2153\right)+\left(-55+373\right)\)
\(=2353-473-2153-55+373\)
\(=\left(2353-2153\right)+\left(373-473\right)-55\)
\(=200-100-55=45\)
\(A=\left(1-4\right)+\left(7-10\right)+....+\left(97-100\right)\)
\(=\left(-3\right)+\left(-3\right)+...+\left(-3\right)\)
Số tổng bằng (-3) là:
\(\left[\left(100-1\right):3+1\right]:2\)\(=17\)
\(=>A=\left(-3\right).17\)
\(A=-51\)