\(|1-2x|\)>7

b)\(\frac{-5}{x-3}\)<0

c)(x-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(1-2x< 1\)

\(\Leftrightarrow2x>0\)

\(\Leftrightarrow x>0\)

b)\(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne2\\\left(x+1\right)\left(x-4\right)< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x+1< 0\\x-4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x\ne2\\x+1>0\\x-4< 0\end{cases}}\)

mà \(x+1>x-4\forall x\)

nên \(\hept{\begin{cases}x\ne2\\x+1>0\\x-4< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x>-1\\x< 4\end{cases}}\)

hay \(\hept{\begin{cases}x\ne2\\-1< x< 4\end{cases}}\)

c)\(x-2< 0\)

\(\Leftrightarrow x< 2\)

d)\(\frac{x^2\left(x-3\right)}{x-9}< 0\left(x\ne9\right)\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\\frac{x-3}{x-9}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-3< 0\\x-9>0\end{cases}}\)hoặc \(\hept{\begin{cases}x\ne0\\x-3>0\\x-9< 0\end{cases}}\)

mà \(x-3>x-9\forall x\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-3>0\\x-9< 0\end{cases}}\)\(\Leftrightarrow3< x< 9\)

e)\(\frac{5}{x}< 1\left(x\ne0\right)\)

\(\Leftrightarrow x>5\)

f)\(8x>2x\)

\(\Leftrightarrow6x>0\)

\(\Leftrightarrow x>0\)

g)\(x+a< a\)

\(\Leftrightarrow x< 0\)

h)\(x^3< x^2\)

\(\Leftrightarrow x^2\left(x-1\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x< 1\end{cases}}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

a)

\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)

b)

\(\frac{1}{4}-(2x-1)^2=0\)

\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)

\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)

c)

\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)

\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)

\(\Leftrightarrow 5-x=\frac{-3}{4}\)

\(\Leftrightarrow x=\frac{23}{4}\)

d)

\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)

\(\Rightarrow x=3,8:2=1,9\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

e)

\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)

\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)

f)

\(5^{(x+5)(x^2-4)}=1\)

\(\Leftrightarrow (x+5)(x^2-4)=0\)

\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)

g)

\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)

\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)

h)

\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)

\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)

b: \(\dfrac{2x+3}{3-x}\le0\)

\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)

=>x>3 hoặc x<=-3/2

c: \(\dfrac{x+5}{x+3}>1\)

\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)

=>2/(x+3)>0

=>x+3>0

hay x>-3

9 tháng 6 2017

a, Ta thấy: \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|\ge0\\\left|y-\frac{2}{5}\right|\ge0\\\left|z+\frac{1}{2}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|\ge0}\)

Mà đề cho là \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|\le0\)

\(\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{2}{5}=0\\z+\frac{1}{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{2}{5}\\z=\frac{-1}{2}\end{cases}}}\)

Vậy....

b, (x - 2)2 = 1

=> x - 2 = 1 hoặc x - 2 = -1

=> x = 3 hoặc x = 1

Vậy...

c, (2x - 1)3 = -27

=> 2x - 1 = -3

=> 2x = -2

=> x = -1

1) Tìm x:

a) \(\frac{11}{12}-\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{2}{3}\)

\(\Leftrightarrow\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)

\(\Leftrightarrow\frac{2}{5}+x=\frac{1}{4}:\frac{5}{12}=\frac{3}{5}\)

\(\Leftrightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)

b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)

\(\Leftrightarrow x=-\frac{7}{20}:\frac{1}{4}=\frac{-7}{5}\)

7 tháng 7 2019

a) \(\frac{11}{12}-\frac{5}{12}\left(\frac{2}{5}+x\right)=\frac{2}{3}\)

\(\Leftrightarrow\frac{11}{12}-\frac{5}{12}.\frac{2}{5}-\frac{5}{12}x=\frac{2}{3}\)

\(\Leftrightarrow\frac{11}{12}-\frac{1}{6}-\frac{5}{12}x=\frac{2}{3}\)

\(\Leftrightarrow\frac{-5}{12}x=\frac{2}{3}-\frac{11}{12}+\frac{1}{6}\)

\(\Leftrightarrow-\frac{5}{12}x=\frac{8}{12}-\frac{11}{12}+\frac{2}{12}=-\frac{1}{12}\)

\(\Leftrightarrow x=\frac{-1}{12}:\left(-\frac{5}{12}\right)=-\frac{1}{12}.\left(-\frac{12}{5}\right)=\frac{1}{5}\)

Vậy x = 1/5

b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=\frac{8}{20}-\frac{15}{20}=-\frac{7}{20}\)

\(\Leftrightarrow x=\frac{1}{4}:\left(-\frac{7}{20}\right)=\frac{1}{4}.\left(-\frac{20}{7}\right)=-\frac{5}{7}\)

Vậy x = -5/7

c) \(2x\left(x-\frac{1}{7}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)

d) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\end{matrix}\right.\)

Ta thấy x <-1 và x >2 vô lí

Do đó: x >-1 và x <2

Vậy -1 < x <2

e) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy x > 2 hoặc x < -2/3

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)