Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
Bài 2
a) 3 × 1/2 + 1/4 × 1/3
= 3/2 + 1/12
= 18/12 + 1/12
= 19/12
b) 1 4/5 - 2/3 : 2 1/3
= 9/5 - 2/3 : 7/3
= 9/5 - 2/7
= 63/35 - 10/35
= 53/35
\(\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}=\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}=\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=\)
\(\frac{1}{1}-\frac{1}{6}=\frac{5}{6}\)
k nha gõ mỏi tay lắm
\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)
Vậy \(A=\frac{1}{20}\)
\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)
\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)
Vậy \(B=1004\)
DẤU CHẤM LÀ DẤU NHÂN
a,
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2018}\right)\times\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2017}{2018}\times\frac{2018}{2019}\)
\(=\frac{1\times2\times3\times...\times2017\times2018}{2\times3\times4\times...\times2018\times2019}\)
\(=\frac{1}{2019}\)
\(\frac{3}{5}\times\frac{2}{7}:\frac{4}{9}=\frac{3\times2}{5\times7}\times\frac{9}{4}=\frac{6}{35}\times\frac{9}{4}=\frac{54}{140}=\frac{27}{70}\)
\(\frac{2}{11}:\frac{1}{3}\times\frac{3}{2}=\frac{2}{11}\times3\times\frac{3}{2}=\frac{2\times3\times3}{11\times2}=\frac{3\times3}{11}=\frac{9}{11}\)
\(\frac{5}{2}\times\frac{1}{3}+\frac{1}{4}=\frac{5}{6}+\frac{1}{4}=\frac{10}{12}+\frac{3}{12}=\frac{13}{12}\)
\(\frac{1}{2}+\frac{1}{4}:\frac{1}{6}=\frac{1}{2}+\frac{1}{4}\times6=\frac{1}{2}+\frac{6}{4}=\frac{1}{2}+\frac{3}{2}=\frac{4}{2}=2\)
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2018}\right)\)
\(A=\frac{2}{1+2}\cdot\frac{2+3}{1+2+3}\cdot\frac{2+3+4}{1+2+3+4}\cdot...\cdot\frac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018}\)
Đến chỗ này đố ai tính được ?!!?!
gạch các số của tử số và các số của mẫu số giống nhau
ví dụ như bạn nói:
\(\dfrac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018} =1\)