Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\sqrt {0,49} + \sqrt {0,64} = 0,7 + 0,8 = 1,5;\\b)\sqrt {0,36} - \sqrt {0,81} = 0,6 - 0,9 = - 0,3;\\c)8.\sqrt 9 - \sqrt {64} = 8.3 - 8 = 24 - 8 = 16;\\d)0,1.\sqrt {400} + 0,2.\sqrt {1600} = 0,1.20 + 0,2.40 = 2 + 8 = 10\end{array}\)
\(A=\sqrt{1}-\sqrt{9}-\sqrt{16}-\sqrt{25}-....-\sqrt{400}\)
\(A=1-3-4-5-....-20\)
\(A=-206\)
a/ 2300 và 3200
2300=(23)100=8100
3200=(32)100=9100
mà 8100<9100
vậy 2300<3200
b/0,110 và 0,320
0,320=(0,32)10=0,0910
mà 0,110>0,0910
vậy 0,110 > 0,320
c/√0,04 + √0,25 và 5,4 + 7√0,36
Ta có: √0,04 + √0,25
=0,2+0,5=0,7
Ta có: 5,4 + 7√0,36
=5,4+7x0,6
=9,6
mà 0,7<9,6
vậy√0,04 + √0,25 < 5,4 + 7√0,36
d/ √(25+9) và √25 + √9
√(25+9)=√34
√25 + √9
=5+3
=8=√64
Mà √34 < √64
vậy √(25+9) < √25 + √9
Bài 1:
a, \(\sqrt{x}+98=498\)
\(\Leftrightarrow\sqrt{x}=400\Leftrightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
b, \(\frac{9}{7}+\sqrt{\frac{1600}{100}}-x+5=\frac{1920}{17}\)
\(\Leftrightarrow-x=\frac{1920}{17}-5-\frac{9}{7}-4\)
\(\Leftrightarrow-x=\frac{12216}{119}\Leftrightarrow x=-\frac{12216}{119}\)
c, \(3728+\left(-x\right)=0\)
\(\Leftrightarrow3728-x=0\Leftrightarrow x=3728\)
d, \(\left(-45\right)+6-\sqrt{x}=43\)
\(\Leftrightarrow-\sqrt{x}=43-6+45\)
\(\Leftrightarrow-\sqrt{x}=82\Leftrightarrow\sqrt{x}=-82\)
=> phương trình vô nghiệm vì \(\sqrt{x}\ge0\)
Bài 2:
Không có liên hệ cụ thể giữa a và b thì khó tìm lắm bạn ơi, vì nó có rất nhiều kết quả, nếu cần thì nhắn cho mình, mình liệt kê hết cho
=1-2+3-4+5-6+...+19-20
=-1-1-1-1-1-1-...-1
20 so-1
=-1.20=-20
Ta có:
\(\sqrt{25}+\sqrt{9}=5+3=8\)
\(\sqrt{25+9}=\sqrt{34}< \sqrt{64}=8\)
Vậy, \(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)
Bài 1:
a) Ta có: \(\left(0.125\right)\cdot\left(-3\cdot7\right)\cdot\left(-2\right)^3\)
\(=\frac{1}{8}\cdot\left(-21\right)\cdot\left(-8\right)\)
\(=\frac{1}{8}\cdot168\)
\(=21\)
b) Ta có: \(\sqrt{36}\cdot\sqrt{\frac{25}{16}}+\frac{1}{4}\)
\(=\sqrt{36\cdot\frac{25}{16}}+\frac{1}{4}\)
\(=\sqrt{\frac{225}{4}}+\frac{1}{4}\)
\(=\frac{15}{2}+\frac{1}{4}\)
\(=\frac{31}{4}\)
c) Ta có: \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)
\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)
\(=\frac{2}{5}-\frac{7}{5}=-1\)
d) Ta có: \(0,1\cdot\sqrt{225}\cdot\sqrt{\frac{1}{4}}\)
\(=0,1\cdot15\cdot\frac{1}{2}=\frac{3}{4}\)
\(0,1.\sqrt{400}+0,2.\sqrt{1600}=0,1.20+0,2.40\)\(=2+8=10\)
\(0,1.\sqrt{400}+0,2.\sqrt{1600}\\ =0,1.20+0,2.40\\ =2+8\\ =10\)