![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Do đó :
\(\frac{a}{b}=1\Rightarrow a=b\)\(\left(1\right)\)
\(\frac{b}{c}=1\Rightarrow b=c\)\(\left(2\right)\)
\(\frac{c}{a}=1\Rightarrow c=a\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)suy ra \(a=b=c\left(dpcm\right)\)
Vậy \(a=b=c\)
1) a/b = b/c= c/a = a+b+c / a+b+ c = 1 (tính chất dãy tỉ số bằng nhau)
=> đpcm
2) Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)
\(\frac{x}{3}=1;x=3.1=3\);\(\frac{y}{6}=1;y=6.1=6\);\(\frac{z}{10}=1;z=10.1=10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\dfrac{4}{5}-\dfrac{5}{6}< =\dfrac{x}{30}< =\dfrac{1}{3}-\dfrac{3}{10}\)
=>\(\dfrac{24-25}{30}< =\dfrac{x}{30}< =\dfrac{10-9}{30}\)
=>\(\dfrac{-1}{30}< =\dfrac{x}{30}< =\dfrac{1}{30}\)
=>-1<=x<=1
mà x nguyên
nên \(x\in\left\{-1;0;1\right\}\)
b: \(\dfrac{a}{7}+\dfrac{1}{14}=\dfrac{-1}{b}\)
=>\(\dfrac{2a+1}{14}=\dfrac{-1}{b}\)
=>\(\left(2a+1\right)\cdot b=-14\)
mà 2a+1 lẻ (do a là số nguyên)
nên \(\left(2a+1\right)\cdot b=1\cdot\left(-14\right)=\left(-1\right)\cdot14=7\cdot\left(-2\right)=\left(-7\right)\cdot2\)
=>\(\left(2a+1;b\right)\in\left\{\left(1;-14\right);\left(-1;14\right);\left(7;-2\right);\left(-7;2\right)\right\}\)
=>\(\left(a;b\right)\in\left\{\left(0;-14\right);\left(-1;14\right);\left(3;-2\right);\left(-4;2\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
![](https://rs.olm.vn/images/avt/0.png?1311)
1;Theo bài ra:3+(-2)+x=5
=>(-2)+x=5-3=2
=>x=2-(-2)
=>x=4
2,a+x=5
=>x=5-a
a-x=2
=>x=a-2
3;a+x=b
=>x=b-a
a-x=b
=>x=a-b
\(\left|x\right|=a\)
\(\Rightarrow\left\{{}\begin{matrix}x=a\\x=-a\end{matrix}\right.\)
vì |x|=a nên x=a;x=-a