Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-\frac{1}{3}\right)< 0\)
Để \(x\left(x-\frac{1}{3}\right)< 0\)thì x và \(x-\frac{1}{3}\)trái dấu nhau
Thấy \(x>x-\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}x>0\\x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}\Leftrightarrow}0< x< \frac{1}{3}}\)
(x+1)+(x+2)+(x+3)=4x
x+1+x+2+x+3=4x
(x+x+x)+(1+2+3)=4x
x*3+6=4x
6=1*x(bớt cả hai vế đi 3*x)
x=6/1(Tìm thừa số)
x=6
a, 1,5 +|2x - 2/3| = 3/2
|2x - 2/3| = 3/2 - 1,5
|2x - 2/3| = 0
<=> 2x - 2/3 = 0
<=> 2x = 0 + 2/3
<=> 2x = 2/3
<=> x = 2/3 : 2
<=> x = 1/3
Vậy x = 1/3
b, 3/4 - |1/4 - x| = 5/8
|1/4 - x| = 3/4 - 5/8
|1/4 - x| = 1/8
<=> 1/4 - x = 1/8
1/4 - x = /1/8
<=> x = 1/4 - 1/8
x = 1/4 - ( -1/8)
<=> x = 1/8
x = 3/8
Vậy x thuộc { 1/8 ; 3/8 }
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
Khó quá bạn ơi
Mình thật lòng xin lỗi bạn trăm ngàn lần mình không biết làm
gấp ạ
\(a,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.nghiệm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{1}{6}\)
\(b,\Leftrightarrow\left|x\right|=\dfrac{3}{4}+x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}+x\left(x\ge0\right)\\x=-\dfrac{3}{4}-x\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=\dfrac{3}{4}\left(vô.nghiệm\right)\\x=-\dfrac{3}{8}\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-\dfrac{3}{8}\)