Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(5x^ny^3:4x^2y^2=\dfrac{5}{4}x^{n-2}y\)
Để đây là phép chia hết thì n-2>0
hay n>2
b: \(x^ny^{n+1}:x^2y^5=x^{n-2}y^{n-4}\)
Để đây là phép chia hết thì \(\left\{{}\begin{matrix}n-2>0\\n-4>0\end{matrix}\right.\Leftrightarrow n>4\)
Thuc hien phep tinh:
a) (7.35 -34 +36 ) : 34
=(1701-81+729):81
=2349:81
=29
b) (163 - 642 ) :83
=(4096-4096):512
=0:512
=0
BÀi 2:
a)n=2
b)n=4
~~~~~~ Ai đi ngang qua nhớ để lại ~~~~~~~~~
Tkanks
copy trên mạng thì cần gì phải đọc đề bài :))
Đặt f(x) = ax3 + x2 - x + b
g(x) = x2 + 3x + 2 = ( x + 1 )( x + 2 )
h(x) là thương trong phép chia f(x) cho g(x)
f(x) chia hết cho g(x) <=> f(x) = g(x).h(x)
<=> ax3 + x2 - x + b = ( x + 1 )( x + 2 ).h(x) (*)
Với x = -1 => (*) <=> -a + 2 + b = 0 => -a + b = -2 (1)
Với x = -2 => (*) <=> -8a + 6 + b = 0 => -8a + b = -6 (2)
Từ (1) và (2) ta có hệ \(\hept{\begin{cases}-a+b=-2\\-8a+b=-6\end{cases}}\)Giải hệ thu được a = 4/7 và b = -10/7
Vậy a = 4/7 và b = -10/7
Gọi thương của phép chia là B(x)
⇒ x3+ax+b=(x2+x-2).B(x)
⇒x3+ax+b=(x+2)(x-1) . B(x)
Vì đẳng thức trên luôn đúng với mọi x nên ta thay x=1,x=-2
⇒
Với a=-3,b=2 thì x3+ax+b chia hết x2+x-2
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
khong thuc hien phep tinh hay cm rang A chia het cho B biet rang
A=(x+1)(x+3)(x+5)(x+7)+15 va B = x+6
\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(A=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(a=x^2+8x+11\)
\(\Rightarrow A=\left(a-4\right)\left(a+4\right)+15\)
\(\Leftrightarrow A=a^2-16+15\)
\(\Leftrightarrow A=a^2-1\)
Thay a vào A ( :v ) ta có :
\(A=\left(x^2+8x+11\right)^2-1\)
\(A=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)
\(A=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(A=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)
\(A=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)
\(A=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)⋮x+6\left(đpcm\right)\)
Đặt Q là thương của phép chia . Vì đây là phép chia hết nên ta có phương trình
5x4+5x3+x2+11x+a = (x2+x+b)Q . Mà vế trái là đa thức bậc 4 nên khi chia cho đa thức bậc 2 thì thương có dạng Q = mx2+nx+h
( với m,n,h là hệ số của đa thức )
=> 5x4+5x3+x2+11x+a = (x2+x+b)(mx2+nx+h)
<=>5x4+5x3+x2+11x+a = mx4+ nx3 + hx2 + mx3 + nx2 + hx + bmx2 + bnx + bh
= mx4 + (m+n)x3 + (h+n+bm)x2 + (h+bn)x + bh
Mà theo nguyên tắc hai vế bằng nhau thì hệ số của bậc nào bằng hệ số bậc cùng bậc bên vế kia .
=> m = 5
m+n = 5 => n = 0
h+bn = 11 => h = 11
h+n+bm = 1 => b = -2
bh = a = -22
Vậy a = -22 ; b = -2 ; Q = 5x2+11
x4-30x2+31x-30 = 0
<=> x4 + ( x3 - x3 ) + ( x2 - x2 - 30x2 ) + ( 30x + x ) -30 = 0
<=> ( x4 + x3 - 30x2 ) + ( -x3 - x2 + 30x ) + ( x2 + x - 30 ) =0
<=> x2.( x2 + x - 30 ) - x.( x2 + x - 30 ) + ( x2 + x - 30 ) = 0
<=> ( x2 + x - 30 )( x2 - x + 1 ) = 0
<=> ( x2 + x - 30 )( x - 5 )( x + 6 ) = 0
Vì x2 + x - 30 = x2 + x + \(\frac{1}{4}\) - \(\frac{121}{4}\) = ( x + \(\frac{1}{2}\) )2 - \(\frac{121}{4}\) \(\ge\)- \(\frac{121}{4}\)
=> x - 5 = 0 hoặc x + 6 = 0
=> x = 5 hoặc x = -6
Vậy tập nghiệm S = { -6 ; 5 }