K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

a, \(x^3=x\)

<=> \(x^3-x=0\)

<=> \(x\left(x^2-1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

b, Viết lại đề đi bn 

c, \(x^3-25x=0\)

<=> \(x\left(x^2-25\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}}\)

25 tháng 10 2021

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với

 

4 tháng 1 2022

giúp mình với

4 tháng 1 2022

\(a,\Leftrightarrow\left(4-5x\right)\left(4+5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1-2\right)\left(x+1+2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(3x+1-2x\right)\left(3x+1+2x\right)=0\\ \Leftrightarrow\left(x+1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{5}\end{matrix}\right.\\ d,Sửa:\left(4x+1\right)^2-\left(x-2\right)^2=0\\ \Leftrightarrow\left(4x+1-x+2\right)\left(4x+1+x-2\right)=0\\ \Leftrightarrow\left(3x+3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{5}\end{matrix}\right.\\ e,\Leftrightarrow\left(2x+1-x-3\right)\left(2x+1+x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

a: (2x+1)(3-x)(4-2x)=0

=>(2x+1)(x-3)(x-2)=0

hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)

b: 2x(x-3)+5(x-3)=0

=>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

c: =>(x-2)(x+2)+(x-2)(2x-3)=0

=>(x-2)(x+2+2x-3)=0

=>(x-2)(3x-1)=0

=>x=2 hoặc x=1/3

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

e: =>(2x+5+x+2)(2x+5-x-2)=0

=>(3x+7)(x+3)=0

=>x=-7/3 hoặc x=-3

f: \(\Leftrightarrow2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)

16 tháng 10 2021

mình cần gấp

 

17 tháng 10 2021

a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)

\(\Leftrightarrow2x^2-2x-2x^2=-6\)

\(\Leftrightarrow x=3\)

b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

31 tháng 10 2020

a) x2 - 25x = 0

=> x(x - 25) = 0

=> \(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)

b) (x - 3)2 - 36x2 = 0

=> (x - 3)2 - (6x)2 = 0

=> \(\left(x+6x-3\right)\left(x-6x-3\right)=0\)

=> \(\orbr{\begin{cases}7x-3=0\\-5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{7}\\x=-\frac{3}{5}\end{cases}}\)

c) 2x(3 - x) + 2x2 = 12

=> 6x - 2x2 + 2x2 = 12

=> 6x = 12

=> x = 2

d) x(x - 2) - x + 2 = 0

=> x(x - 2) - (x - 2) = 0

=> (x - 1)(x - 2) = 0

=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

31 tháng 10 2020

a. x - 25x = 0

\(\Leftrightarrow x\left(x-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)

Vậy ...

b.(x-3)2 - 36x= 0

\(\Leftrightarrow\left(x-3-6x\right)\left(x-3+6x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-5x-3=0\\7x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{5}\\x=\frac{3}{7}\end{cases}}\)

Vậy...

c.2x(3-x)+2x2 = 12 

<=> 6x - 2x2 + 2x= 12

<=> 6x = 12

<=> x = 2

d. x (x-2) - x + 2 =0

<=> x(x-2 ) - (x - 2 ) = 0

<=> ( x - 2 ) ( x - 1 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Vậy...

2 tháng 10 2018

\(a.\) \(x^3-25x=0\)

\(\Leftrightarrow x\left(x^2-5^2\right)=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

TH1: \(x=0\)

TH2: \(x+5=0\Rightarrow x=-5\)

TH3: \(x-5=0\Rightarrow x=5\)

2 tháng 10 2018

a, x3-25x = 0

\(\Leftrightarrow\) x( x2- 25) = 0

\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}

b, (2x+3)2 = (x+4)2

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}

c, (2x-1)2 - (2x-5)(2x+5) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18

\(\Leftrightarrow\) -4x + 26 = 18

\(\Leftrightarrow\) -4x = -8

\(\Leftrightarrow\) x = 2

Vậy phương trình có tập nghiệm S = { 2}

d, x3 - 8 = ( x-2)3

\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8

\(\Leftrightarrow\) 6x2 - 12x = 0

\(\Leftrightarrow\) 6x( x- 2) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S = {0; 2}