Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
1/ a/ 3x(4x2 - 3xy + 5y)
= (3x.4x2)-[3x.3xy)]+(3x.5y)
= 12x3 - 9x2y + 15xy
b/ (2x - 1).(x2 + 5x + 2)
= 2x3 + 10x2 + 4x - x2 - 5x - 2
= 2x3 + 9x2 - x - 2.
2/ a/ 4x - 8y = 4.(x-2y)
b/ x3 - x2y - x + y
= x2.(x - y) - (x - y)
= (x - y).(x2 - 1)
= (x - y).(x - 1).(x + 1)
3/ a/ x3 - 4x = 0
x..(x2 - 4) = 0
x.(x+2).(x-2) = 0
=> x = 0; x + 2 = 0; x - 2 = 0
hay x = 0; x = -2; x = 2.
b/ (2x+3)2 - x(4x+3) = 18
4x2 + 6x + 9 - 4x2 - 3x - 18 = 0
(4x2 - 4x2) + (6x - 3x) + (9-18) = 0
3x - 9 = 0
=> 3x = 9 => x = 3.
a)
\(12xy-4x^2y+8xy^2\\ =4xy\cdot\left(3-x+2y\right)\)
b)
\(4x\cdot\left(x-2y\right)-8y\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)^2\)
c)
\(25x^2\cdot\left(y-1\right)-5x^3\cdot\left(1-y\right)\\ =-25x^2\cdot\left(1-y\right)-5x^3\cdot\left(1-y\right)\\ =\left(1-y\right)\cdot\left(-25x^2-5x^3\right)\\ =5x^2\left(1-y\right)\cdot\left(-5-x\right)\)
d)
\(3x\cdot\left(a-x\right)+4a\cdot\left(a-x\right)\\ =\left(a-x\right)\cdot\left(3x+4a\right)\)
e)
\(x^3-3x^2+2\\ =x^3-x^2-2x^2+2\\ =x^2\cdot\left(x-1\right)-2\left(x^2-1\right)\\ =x^2\cdot\left(x-1\right)-2\cdot\left(x-1\right)\cdot\left(x+1\right)\\ =\left(x-1\right)\left[x^2-2\cdot\left(x+1\right)\right]\\ =\left(x-1\right)\cdot-\left(x^2+2x+1\right)\\ =\left(x-1\right)\cdot-\left(x+1\right)^2\)
1, \(A=3x^2+5x-1\)
\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{1}{3}\right)\)
\(=3\left(x^2+\dfrac{5}{6}.x.2+\dfrac{25}{36}-\dfrac{37}{36}\right)\)
\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{37}{12}\ge\dfrac{-37}{12}\)
Dấu " = " khi \(3\left(x+\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{-5}{6}\)
Vậy \(MIN_A=\dfrac{-37}{12}\) khi \(x=\dfrac{-5}{6}\)
2,3 tương tự
4, \(A=2x^2+7x\)
\(=2\left(x^2+\dfrac{7}{4}.x.2+\dfrac{49}{16}-\dfrac{49}{16}\right)\)
\(=2\left(x+\dfrac{7}{4}\right)^2-\dfrac{49}{8}\ge\dfrac{-49}{8}\)
Dấu " = " khi \(2\left(x+\dfrac{7}{4}\right)^2=0\Leftrightarrow x=\dfrac{-7}{4}\)
Vậy \(MIN_A=\dfrac{-49}{8}\) khi \(x=\dfrac{-7}{4}\)
5, 6 tương tự
7, \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " khi \(\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MIN_A=-36\) khi x = 0 hoặc x = -5
8, \(A=x^2-4x+y^2-8x+6\)
\(=x^2-4x+4+y^2-8x+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy \(MIN_A=-14\) khi x = 2 và y = 4
1.
= 4x\(^{^{ }2}\)-4x-9x+9
=4x(x-1)-9(x-1)
=(4x-9)(x-1)
a, 15x5 - 10x4 + 5x3 + 10x2
b, -2a5x4 + 10a3x2 - 6a2x
c, 6x4 - 2x3 - 15x2 + 23x - 6
d, a5 - b5
Bài 2:
a, \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\end{matrix}\right.\)
Vậy...
b, \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy...
c, \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{2}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy...
Bài 3:
1, Đặt \(A=x^2+\dfrac{1}{2}x+\dfrac{1}{16}=x^2+\dfrac{1}{4}.x.2+\dfrac{1}{16}\)
\(=\left(x+0,25\right)^2\)
Thay x = 49,75 vào A ta có:
\(A=50^2=2500\)
2, tương tự
a) \(x^2-y^2-5x-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
b) \(5x^3-5x^2y-10x^2+10xy\)
\(=\left(5x^3-5x^2y\right)-\left(10x^2-10xy\right)\)
\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x^2-10x\right)\)
\(=5x\left(x-y\right)\left(x-2\right)\)
c) \(x^3-2x^2-x+2\)
\(=\left(x^3-2x^2\right)-\left(x-2\right)\)
\(=x^2\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-1\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(-y^2+2xy-x^2+3x-3y\)
\(=-\left(y^2-2xy+x^2\right)+\left(3x-3y\right)\)
\(=-\left(y-x\right)^2+3\left(x-y\right)\)
\(=-\left(x-y\right)^2+3\left(x-y\right)\)
\(=\left(x-y\right)\left[-\left(x-y\right)+3\right]\)
\(=\left(x-y\right)\left(-x+y+3\right)\)
g) \(4x^2-8x+3\)
\(=4x^2-6x-2x+3\)
\(=\left(4x^2-6x\right)-\left(2x-3\right)\)
\(=2x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-3\right)\left(2x-1\right)\)
h) \(2x^2-5x-7\)
\(=2x^2+2x-7x-7\)
\(=\left(2x^2+2x\right)-\left(7x+7\right)\)
\(=2x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(x+1\right)\left(2x-7\right)\)
k) \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
1,4x2.(5x3+2x-1)
=4x2.5x3+4x2.2x-4x2.1
20x5+8x3-4x2
2,4x3y2:x2
=4xy2
3,(15x2y3-10x3y3+6xy):5xy
15x2y3:5xy-10x3y3:5xy+6xy:5xy
3xy2-2x2y2+\(\dfrac{6}{5}\)
a) \(x^3-2x^2y-4x+8y\\ =x^2\left(x-2y\right)-4\left(x-2y\right)\\ =\left(x^2-4\right)\left(x-2y\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-2y\right)\)
b) \(2a^3+16b^3\\ =2\left(a^3+8b^3\right)\\ =2\left(a+2b\right)\left(a^2-2ab+4b^2\right)\)
c) \(x^2+5x+6\\ =x^2+2x+3x+6\\ =x\left(x+2\right)+3\left(x+2\right)\\ =\left(x+2\right)\left(x+3\right)\)
a) \(x^3-2x^2y-4x+8y\)
\(=x^2\left(x-2y\right)-4\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x^2-4\right)\)
\(=\left(x-2y\right)\left(x-2\right)\left(x+2\right)\)
b) \(2a^3+16b^3\)
\(=2\left(a^3+8b^3\right)\)
\(=2\left(a+2b\right)\left(a^2-2ab+4b^2\right)\)
c) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)