K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: x chẵn

⇔x=2k(k∈N)

\(x^2=4k^2\)(1)

Ta có: y chẵn

⇔y=2b(b∈N)

\(y^2=4b^2\)(2)

Cộng (1) và (2) ta được: \(x^2+y^2=4k^2+4b^2=4\left(k^2+b^2\right)⋮4\)(đpcm)

b) Ta có: x⋮7

⇔x=7a(a∈N)

\(x^2=49a^2\)(3)

Ta có: y⋮7

⇔y=7c

\(y^2=49c^2\)(4)

Cộng (3) và (4) ta được: \(x^2+y^2=49a^2+49c^2=49\left(a^2+c^2\right)⋮7\)(đpcm)

30 tháng 10 2020

a/

\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)

\(5x+47y=\left(5x+30y\right)+17y\)

\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)

b/

\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)

Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)

15 tháng 1 2017

2x + 3y chia hết cho 7

=> 3(2x+3y) chia hết cho 7 

hay 6x+ 9y chia hết cho 7        (1)

3x + y chia hết cho 7 

=> 2(3x+y) chia hết cho 7 

hay 6x + 2y chia hết cho 7        

xét hiệu

=> 6x + 9y - (6x + 2y) 

= 6x -+ 9y - 6x - 2y 

= 7y chia hết cho 7            (2) 

từ 1 và 2 

=> 6x + 2y chia hết cho 7 

hay 3x + y chia hết cho 7 (đpcm)

a) Ta có :

\(x^2-2x+1=6y^2-2x+2\)

\(\Leftrightarrow x^2=6y^2+1\)

\(\Leftrightarrow x^2-1=6y^2\)

Mà \(6y^2⋮2\)

\(\Leftrightarrow6y^2=\left(x-1\right)\left(x+1\right)⋮2\)

Mặt khác : \(\left(x-1\right)+\left(x+1\right)=2x⋮2\)

\(\Leftrightarrow x-1;x+1\)cùng chẵn

\(\Rightarrow x-1;x+1\)là hai số chẵn liên tiếp

\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮8\)

\(\Leftrightarrow6y^2⋮8\)

\(\Leftrightarrow3y^2⋮4\)

\(\Leftrightarrow y^2⋮4\)

\(\Leftrightarrow y⋮2\)

Do \(y\in P\):

\(\Rightarrow y=2\)

\(\Rightarrow x=5\)

Vậy........

b) Xét hiệu : \(A=9\left(7x+4y\right)-2\left(13x+18y\right)\)

\(\Rightarrow A=63x+36y-26x-36y\)

\(\Rightarrow A=37x\)

\(\Rightarrow A⋮37\)

Vì \(7x+4y⋮37\)

\(\Rightarrow9\left(7x+4y\right)⋮37\)

Mà \(A⋮37\)

\(\Rightarrow2\left(13x+18y\right)⋮37\)

Do 2 và 37 nguyên tố cùng nhau :

\(\Rightarrow13x+18y⋮37\)

Vậy...................

2 tháng 12 2021

Ta có:4(2x+3y)+(9x+5y)

=8x+12y+9x+5y

=17x+17y chia hết cho 17

Mà 4(2x+3y) chia hết cho 17 nên 9x+5y chia hết cho 17

2 tháng 12 2021

Dương Hoài Giang mik thấy sai sai kiểu j ý

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

* Chứng minh \(x\vdots 3, y\vdots 3\Rightarrow x^2+y^2\vdots 3(*)\)

Thật vậy \(x\vdots 3; y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\)

* Chứng minh \(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3(**)\)

Tính chất: Số chính phương $x^2$ khi chia cho $3$ dư $0$ hoặc $1$ (để chứng minh điều này, bạn có thể đặt $x=3k,3k+1,3k+2$ và khai triển ta có ngay đpcm)

Áp dụng tính chất trên:

+) Nếu \(x^2\) chia hết cho $3$, $y^2$ chia $3$ dư $1$ \(\rightarrow x^2+y^2\) chia 3 dư 1 (trái giả thiết)

+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia hết cho $3$, thì $x^2+y^2$ chia 3 dư $1$ (trái giả thiết)

+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia 3 dư 1, thì $x^2+y^2$ chia 3 dư $2$ (trái giả thiết)

Do đó $x^2,y^2$ phải cùng chia hết cho $3$. Mà $3$ là số nguyên tố nên \(\Rightarrow x\vdots 3; y\vdots 3\) (đpcm)

Từ \((*) (**): x^2+y^2\vdots 3\Leftrightarrow x\vdots 3; y\vdots 3\)

Ta có đpcm.

1 tháng 5 2019

Cảm ơn bạn nhiều nha