\(^2\)y\(^2\) + 15x\(^2\)y -...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a) \(12x^2y-18xy^2-30y^2=6y\left(2x^2-3xy-5y\right)\)

b) \(5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)

c) \(y\left(x-z\right)+7\left(z-x\right)=y\left(x-z\right)+7\left[-\left(x-z\right)\right]\)

\(=y\left(x-z\right)-7\left(x-z\right)\)

\(\left(y-7\right)\left(x-z\right)\)

d) \(36-12x+x^2=\left(6-x\right)^2\)

e) \(\left(y-4\right)^2-9\left(y+2\right)^2=-4\left(y +5\right)\left(2y+1\right)\)

4 tháng 12 2017

c) \(\frac{x+9}{x^2-9}+\frac{1}{x+3}=\frac{x+9}{\left(x-3\right)\left(x+3\right)}+\frac{x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x+9+x-3}{\left(x-3\right)\left(x+3\right)}=\frac{2x+6}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{x-3}\)

d) \(\frac{8m+8}{11n^2}.\frac{22n^2}{m^2+2m+1}\)

\(=\frac{8\left(m+1\right)}{11n^2}.\frac{22n^2}{\left(m+1\right)^2}\)

\(=\frac{8.2}{m+1}=\frac{16}{m+1}\)

e) \(\frac{5x+3}{4xy^3}:\frac{10x+6}{x^2y}\)

\(=\frac{5x+3}{4xy^3}.\frac{x^2y}{2.\left(5x+3\right)}\)

\(=\frac{x}{8y^2}\)

4 tháng 12 2017

a,8x+5+2x/15x^2y

b,x^2+y^2-2xy/x-v

29 tháng 10 2017

1,Thực hiện phép tính :

a, (x + 2)9 : (x + 2)6

=(x+2)9-6

=(x+2)3

b, (x - y) 4 : (x - 2)3

=(x-y)4-3

=x-y

c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)

=(x2+2x+4)5-1

=(x2+2x+4)4

d, 2(x2 + 1)3 : 1/3(x2 + 1)

=(2÷1/3).[(x2+1)3÷(x2+1)]

=6(x2+1)2

e, 5 (x - y)5 : 5/6 (x - y)2

=(5÷5/6).[(x-y)5÷(x-y)2]

=6(x-y))3

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)

a: \(=\dfrac{5}{2}x-2x+\dfrac{7}{2}=\dfrac{1}{2}x+\dfrac{7}{2}\)

b: \(=\dfrac{-1}{4}x^4-3x^2+\dfrac{9}{4}x\)

c: \(=\dfrac{1}{5}x+\dfrac{1}{15}xy+\dfrac{7}{10}x^2\)

d: \(=-9x^3-1-12y+27xy\)

29 tháng 6 2017

8) \(y^2-y-30=y^2+5y-6y-30=y\left(y+5\right)-6\left(y+5\right)=\left(y-6\right)\left(y+5\right)\)

9) \(y^2-8y+15=y^2-3y-5y+15=y\left(y-3\right)-5\left(y-3\right)=\left(y-5\right)\left(y-3\right)\)

10) \(y^2+y-6=y^2-2y+3y-6=y\left(y-2\right)+3\left(y-2\right)=\left(y+3\right)\left(y-2\right)\)

11) \(y^2-y-12=y^2+3y-4y-12=y\left(y+3\right)-4\left(y+3\right)=\left(y-4\right)\left(y+3\right)\)

12) \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-3\right)\left(x-2\right)\)

13) \(u^2+u-42=u^2+7u-6u-42=u\left(u+7\right)-6\left(u+7\right)=\left(u-6\right)\left(u+7\right)\)

29 tháng 6 2017

14) \(2x^2+x-6=2x^2+4x-3x-6=2x\left(x+2\right)-3\left(x+2\right)=\left(2x-3\right)\left(x+2\right)\)

15) \(7x^2+50x+7=7x^2+49x+x+7=7x\left(x+7\right)+\left(x+7\right)=\left(7x+1\right)\left(x+7\right)\)

16) \(12x^2+7x-12=12x^2+16x-9x-12=4x\left(3x+4\right)-3\left(3x+4\right)=\left(4x-3\right)\left(3x+4\right)\)

17) \(15x^2+7x-2=15x^2-3x+10x-2=3x\left(5x-1\right)+2\left(5x-1\right)=\left(3x+2\right)\left(5x-1\right)\)

18) \(2x^2-y^2+xy=2x^2+2xy-xy-y^2=2x\left(x+y\right)-y\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)

19) \(x^2-3xy+2y^2=x^2-xy-2xy+2y^2=x\left(x-y\right)-2y\left(x-y\right)=\left(x-2y\right)\left(x-y\right)\)