K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

a) Ta có:\(A=\frac{x^2y+xy}{x^2y-y}=\frac{xy\left(x+1\right)}{y\left(x^2-1\right)}=\frac{x+1}{\left(x+1\right)\left(x+1\right)}=\frac{1}{x-1}\)

\(B=\frac{-2x^2}{x^3-x}=\frac{-2x^2}{x\left(x^2-1\right)}=\frac{-2x}{\left(x+1\right)\left(x-1\right)}\)

b) \(A+B=\frac{1}{x-1}+\frac{-2x}{\left(x+1\right)\left(x-1\right)}=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1-2x}{\left(x+1\right)\left(x-1\right)}=\frac{-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{1}{x+1}\)

1 tháng 11 2020

a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)

\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)

\(=x^2+4x\)

Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)

b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

Thay \(x=10\)\(y=-1\)vào biểu thức ta có: 

\(B=10^3-\left(-1\right)^3=1000+1=1001\)

30 tháng 11 2017

Bài 1 

a)  (6x4y2 - 3x3y3) : 3x3y2 = 6x4y2  : 3x3y2 - 3x3y3 : 3x3y2 = 2x - y

b)  (2x - 1)(x2 - x + 3) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3

Bài 2

1)     (x - 2)2 - (x - 3)2 = (x - 2 - x + 3)(x - 2 + x - 3) = 2x - 5>

2)     4x2 - 4xy + 2y2 + 1 = (4x2 - 4xy + y2) + y2 + 1 = (2x - y)2 + y2 + 1 > 0 

vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

13 tháng 8 2016

B2:

b, ( x + 2 )- ( x - 1 )2

= (x+2 - x+1) (x+2 +x-1)

= 3(2x+1)

13 tháng 8 2016

B1: a) x^2 -x 

= x (x-1)

b) 5x ^2 - 5

= 5(x^2 -1)

= 5(x-1)(x+1)

c) x^2 - 2x + 2y - xy 

= x(x-y) - 2(x-y)

= (x-2)(x-y)

4 tháng 7 2015

a) 2x(x-3y)+3y(2x+5y)

=2x2-6xy+6xy+15y2

=2x2+15y2

b)(5x-3y)(2x+y)-x(10x-y)

=10x2+5xy-6xy-3y2-10x2+xy

=0

c)(x-y)(x2+xy+y2)-(x+y)(x2-xy+y2)

=x3-y3-(x3+y3)

=x3-y3-x3-y3

=-2y3

1 tháng 11 2019

a) \(A=\left(3x+2\right)^2-9x\left(x+1\right)\)

\(A=9x^2+12x+4-9x^2-9x\)

\(A=3x+4\)

1 tháng 11 2019

\(B=\left(2x-1\right)^2-2\left(2x-1\right)\left(5x-1\right)+\left(5x-1\right)^2\)

\(B=\left[2x-1-\left(5x-1\right)\right]^2\)

\(B=\left(2x-1-5x+1\right)^2\)

\(B=\left(-3x\right)^2\)

\(B=9x^2\)