K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

\(a,x^2+4x=-3\Leftrightarrow x^2+4x+3=0\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

\(b,3x^2+4x-4=0\Leftrightarrow3x^2+6x-2x-4=0\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=-2\\3x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\)

\(c,x^2+5x-6=0\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\)

\(d,x^2-6x=-9\Leftrightarrow x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

2 tháng 4 2020

cảm ơn thần đồng toán hc nhen

15 tháng 9 2023

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

25 tháng 2 2023

ai giúp em với ạ 😥

25 tháng 2 2023

 

21 tháng 6 2023

a)

`4(x-2)^2 =4`

`<=>(x-2)^2 =1`

`<=>x-2=1` hoặc `x-2=-1`

`<=>x=3` hoặc `x=1`

b)

`5(x^2 -6x+9)=5`

`<=>(x-3)^2 =1`

`<=>x-3=1`hoặc `x-3=-1`

`<=>x=4` hoặc `x=2`

c)

`4x^2 +4x+1=0`

`<=>(2x+1)^2 =0`

`<=>2x+1=0`

`<=>x=-1/2`

d)

`9x^2 +6x+1=2`

`<=>(3x+1)^2 =2`

\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)

21 tháng 6 2023

câu (a), (b) thiếu trường hợp

x - 2 = -1 

và x - 3 = -1

21 tháng 4 2020

Bài 1:

a) \(3x^2+8x-3=0\)

Hệ số: a=3,b'=4,c=(-3)
\(\Delta'=4^2-3.\left(-3\right)=25>0\)

nên pt có 2 nghiệm phân biệt:

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-4+\sqrt{25}}{3}=\frac{1}{3}\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-4-\sqrt{25}}{3}=-3\)

b) \(9x^2-6x+1=0\)

Hệ số: a=9,b'=3,c=1

\(\Delta'=3^2-9.1=0\left(=0\right)\)

nên pt có nghiệm kép: \(x_1=x_2=\frac{-b'}{a}=\frac{-3}{9}=\frac{-1}{3}\)

c) \(2x^2-4x+7=0\)

Hệ số: a=2,b'=(-2),c = 7

\(\Delta'=\left(-2\right)^2-2.7=-10< 0\)

nên pt vô nghiệm

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

a: 3x^2-4x+1=0

a=3; b=-4; c=1

Vì a+b+c=0 nên phương trình có hai nghiệm là:

x1=1 và x2=c/a=1/3

b: -x^2+6x-5=0

=>x^2-6x+5=0

a=1; b=-6; c=5

Vì a+b+c=0 nên phương trình có hai nghiệm là;
x1=1; x2=5/1=5

a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)

\(=m^2-10m+25+4m-24\)

\(=m^2-6m+1=\left(m-3\right)^2-8\)

Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)

\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)

Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)

Ta có: \(x_1x_2=-m+6\)

\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)

\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)

\(\Leftrightarrow6m^2-136m+756=0\)

hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)

b: \(x_1+x_2+x_1x_2-11=0\)

\(\Leftrightarrow m-5-m+6-11=0\)

=>-12=0(vô lý)

6 tháng 4 2017

a) x 2   –   4  = 0: đây là phương trình bậc hai; a = 1; b = 0; c = - 4

b) x 3   +   4 x 2   –   2   =   0 : đây không là phương trình bậc hai

c) 2 x 2   +   5 x   =   0 : đây là phương trình bậc hai; a = 2; b = 5; c = - 5

d) 4x – 5 = 0 đây không là phương trình bậc hai

e) - 3 x 2  = 0 đây là phương trình bậc hai; a = -3; b = 0; c = 0