K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2015

Ta có \(9=3^2\)hoặc\(9=9^1\)\(343=7^3\)

Vì E và B là 2 số khác nhau nên \(E=9,A=1,D=7,B=3\)

Số C bằng:\(25-9-1-7-3=5\)

Đáp số :\(A=1,B=3,C=5,D=7,E=9\)

a: \(=\left(a+b\right)^2-\left(c+d\right)^2\)

b: \(=\left(a-d\right)^2-\left(b-c\right)^2\)

c: \(=\left(x+3z\right)^2-4y^2\)

d: \(=\left(a^2-9\right)\left(a^2+9\right)=a^4-81\)

e: \(=\left(a-5\right)^2\cdot\left(a+5\right)^2=\left(a^2-25\right)^2\)

30 tháng 6 2017

c, C= 4x^2 -12x +25

= 4x^2 -12x + 9+16

= (2x -3)^2 +16

ta có (2x-3)^2 >,= 0 với mọi x

=> (2x-3)^2 +16 >,=16 với mọi x

dấu bằng xảy ra khi (2x-3) ^2 =0

=> 2x-3 = 0

=> 2x =3

=> x =1,5

vậy .............

30 tháng 6 2017

d, D = 2x^2 -8x -5

D= 2(x^2 -4x +4) -13

D= 2(x-2)^2 -13

ta có 2 (x-2)^2 >,= 0 với mọi x

=> 2(x-2)^2 -13 >,= -13 với mọi x

dấu = xảy ra khi 2(x-2)^2 =0

=> (x-2)^2=0

=>x-2 =0

=> x=2

vậy .............

18 tháng 7 2017

a) \(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^{\text{4}}\right)\)

                                                          \(=\left(a-b\right)\left(a+b\right)\left(a^{\text{4}}+a^2b^2+b^{\text{4}}\right)\)

c) \(\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)

e) \(\left(x^2-10x+25\right)-4y^2=\left(x-5\right)^2-\left(2y\right)^2\)

                                                       \(=\left(x-5-2y\right)\left(x-5+2y\right)\)

g) \(x^6+27=\left(x^2\right)^3+3^3=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)

Còn lại tớ làm sau nhé, bây h muộn rùi

15 tháng 2 2019

Áp dụng bất đẳng thức Cauchy- Schwartz ta có: 

      \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\ge\frac{\left(1+1+1+1+1\right)^2}{a+b+c+d+e}=\frac{25}{a+b+c+d+e}\)

Dấu "=" xảy ra khi a = b = c = d = e