Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)2x^3+3x^2-x-1=0
\(\Leftrightarrow\)(2x^3+3x^2)-(x-1)
\(\Leftrightarrow\)2x^2(x+3)-(x-1)
ĐẾN ĐÂY CHẢ BIT NHÂN TỬ CHUNG LÀ SỐ NÀO NỮA HÌNH NHƯ SAI ĐỀ
Sửa đề: x^2+y^2+2x+6y-15=0
Δ vuông góc d nên Δ: 3x+4y+c=0
(C);x^2+y^2+2x+6y-15=0
=>x^2+2x+1+y^2+6y+9-25=0
=>(x+1)^2+(y+3)^2=25
=>R=5; I(-1;-3)
Kẻ IH vuông góc AB
=>H là trung điểm của AB
=>AH=6/2=3cm
=>IH=4cm
=>d(I;Δ)=IH=4
=>|c+3-12|/5=4
=>c=-11 hoặc c=29
=>3x+4y-11=0 hoặc 3x+4y+29=0
a:=>x+1=0 và y-2=0
=>x=-1 và y=2
b: \(\Leftrightarrow\left(x-5;y-7\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;8\right);\left(4;6\right)\right\}\)
c: (x+4)(y-2)=2
=>\(\left(x+4;y-2\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(-3;4\right);\left(-2;3\right);\left(-5;0\right);\left(-6;1\right)\right\}\)
f: =>(x-12)(y-6)=-2
=>\(\left(x-12;y-6\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(13;4\right);\left(10;7\right);\left(11;8\right);\left(14;5\right)\right\}\)
Bài 2:
Đường tròn (C) tâm \(I\left(-2;-\frac{7}{2}\right)\) bán kính \(R=\frac{\sqrt{133}}{2}\)
Sao số xấu dữ vậy ta? Số to như vầy tính toán mệt lắm
Gọi tiếp tuyến d của đường tròn có dạng:
\(a\left(x-2\right)+b\left(y-6\right)=0\Leftrightarrow ax+by-2a-6b=0\)
d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)
\(\Leftrightarrow\frac{\left|-2a-\frac{7}{2}b-2a-6b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{133}}{2}\)
\(\Leftrightarrow\left|6a+19b\right|=\sqrt{133\left(a^2+b^2\right)}\)
\(\Leftrightarrow97a^2-228ab-288b^2=0\)
Chắc bạn ghi sai đề thật, nghiệm pt này xấu hủy hoại, chắc chẳng ai cho đề kiểu như vầy hết
Bài 1:
Gọi d' là đường thẳng qua A và vuông góc d
Phương trình d':
\(4\left(x-1\right)+3\left(y+7\right)=0\Leftrightarrow4x+3y+17=0\)
Tâm của (C) nằm trên d' nên tọa độ có dạng \(I\left(a;\frac{-4a-17}{3}\right)\Rightarrow\overrightarrow{AI}=\left(a-1;\frac{4-4a}{3}\right)\)
\(IA^2=R^2\Leftrightarrow\left(a-1\right)^2+\left(\frac{4-4a}{3}\right)^2=25\)
\(\Rightarrow\left(a-1\right)^2=9\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(4;-11\right)\\I\left(-2;-3\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn:
\(\left[{}\begin{matrix}\left(x-4\right)^2+\left(y+11\right)^2=25\\\left(x+2\right)^2+\left(y+3\right)^2=25\end{matrix}\right.\)
toán lớp 10 thật hả bạn???