A x 50 ? C B D y ? 40 a, Cho ax//by. Tính CBD b, Tính ACB và BCD

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Leftrightarrow\)\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+) Xét \(a+b+c+d=0\)

Suy ra : 

\(a+b=-\left(c+d\right)\)

\(b+c=-\left(d+a\right)\)

\(c+a=-\left(b+d\right)\)

\(d+a=-\left(b+c\right)\)

Do đó : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)

\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)

\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(M=-4\)

+) Xét \(a+b+c+d\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=4\)

Do đó : 

\(\frac{a+b+c+d}{a}=4\)\(\Leftrightarrow\)\(a+b+c+d=4a\) \(\left(1\right)\)

\(\frac{a+b+c+d}{b}=4\)\(\Leftrightarrow\)\(a+b+c+d=4b\) \(\left(2\right)\)

\(\frac{a+b+c+d}{c}=4\)\(\Leftrightarrow\)\(a+b+c+d=4c\) \(\left(3\right)\)

\(\frac{a+b+c+d}{d}=4\)\(\Leftrightarrow\)\(a+b+c+d=4d\) \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra \(4a=4b=4c=4d\) \(\left(=a+b+c+d\right)\)

\(\Leftrightarrow\)\(a=b=c=d\)

\(\Rightarrow\)\(M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow\)\(M=1+1+1+1=4\)

Vậy \(M=-4\) hoặc \(M=4\)

Chúc bạn học tốt ~ 

12 tháng 10 2018

Ta có : 

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow\)\(2\left(a+b+c\right)=2\left(ax+by+cz\right)\)

\(\Leftrightarrow\)\(a+b+c=ax+by+cz\)

+) \(a+b+c=ax+\left(by+cz\right)=ax+2a=a\left(x+2\right)\)

\(\Rightarrow\)\(\frac{1}{x+2}=\frac{a}{a+b+c}\) \(\left(1\right)\)

+) \(a+b+c=by+\left(ax+cz\right)=by+2b=b\left(y+2\right)\)

\(\Rightarrow\)\(\frac{1}{y+2}=\frac{b}{a+b+c}\) \(\left(2\right)\)

+) \(a+b+c=cz+\left(ax+by\right)=cz+2c=c\left(z+2\right)\)

\(\Rightarrow\)\(\frac{1}{z+2}=\frac{c}{a+b+c}\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra \(M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(M=\frac{a+b+c}{a+b+c}=1\)

Vậy \(M=1\)

Chúc bạn học tốt ~ 

21 tháng 5 2018

Có \(x=by+cz\)

=> \(x\left(1+a\right)=ax+x=ax+by+cz\)

=> \(\frac{1}{1+a}=\frac{x}{ax+by+cz}\)

=> \(\frac{a}{1+a}=\frac{ax}{ax+by+cz}\)

Có \(y=cz+ax\)

=> \(y\left(1+b\right)=by+y=by+cz+ax=ax+by+cz\)

=> \(\frac{1}{1+b}=\frac{y}{ax+by+cz}\)

=> \(\frac{b}{1+b}=\frac{by}{ax+by+cz}\)

Có \(z=ax+by\)

=> \(z\left(1+c\right)=cz+z=cz+ax+by=ax+by+cz\)

=> \(\frac{1}{1+c}=\frac{z}{ax+by+cz}\)

=> \(\frac{c}{1+c}=\frac{cz}{ax+by+cz}\)

=> \(M=\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=\frac{ax}{ax+by+cz}+\frac{by}{ax+by+cz}+\frac{cz}{ax+by+cz}\)

\(=\frac{ax+by+cz}{ax+by+cz}=1\)

Vậy giá trị của M là 1

5 tháng 8 2019

kẻ đường thẳng d // Ax đi qua C,

sử dụng trong cùng phía, so le trong hay đồng vị để tính.

Chúc em làm tốt

5 tháng 8 2019

A C B D x 50 độ 40 độ

Kéo dài AC cắt By 

thì ta có :

A=50 độ

ABC chính là góc ngoài tam giác vậy ta có:

40 độ + 50 độ = 90*

27 tháng 7 2023

loading...

Ta có: \(\widehat{ACz}\) và \(\widehat{CAx}\) là hai góc trong cùng phía nên:

           \(\widehat{ACz}\) + \(\widehat{CAx}\) = 1800  ⇒ \(\widehat{ACz}\) = 1800 - 1450 = 350

Mặt khác ta cũng có: \(\widehat{BCz}\) và \(\widehat{CBy}\) là hai góc trong cùng phía nên:

            \(\widehat{BCz}\) + \(\widehat{CBy}\) = 1800 ⇒ \(\widehat{BCz}\) = 1800 - 1200 = 600

\(\widehat{ACB}\) = \(\widehat{ACz}\) + \(\widehat{BCz}\) = 350 + 600 = 950

Kết luận: \(\widehat{ACB}\) = 950