K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

1/2-2y=9/20

=>2y=1/2-9/20=1/20

=>y=1/20:2=1/40

b,3/5:4/3:y=2+7/10=9/20:y=27/10

=>y=9/20:27/10=1/6

c,y+y*3/2-y*1/2=1/10

=>y(1+3/2-1/2)=1/10

=>2y=1/10

=>y=1/10:2=1/20

b) xy + x - y = 4

<=> ( xy + x ) - ( y + 1 ) = 3

<=> x(y + 1 ) - ( y + 1 ) = 3

<=> ( y + 1 ) ( x - 1 ) = 3

Theo bài ra cần tìm các số nguyên dương x,y => Xét các trường hợp y + 1 nguyên dương và x - 1 nguyên dương 

Mà 3 = 1 x 3 => Chỉ cs thể xảy ra 2 th :

* TH1 : y + 1 = 1 ; x -1 = 3 => y = 0 , x = 4 ( loại vì y = 0 )

* TH2 : y + 1 = 3 ; x -1 = 1 => y = 2 ; x = 2 ( T/m )

Vậy x = y = 2

c) xy + 12 = x + y

Ta có : 

xy + 12 = x + y

xy - x - y = 12

x.( y -1 ) - y = 12

[ x.(y -1 ) - y ] + 1 = 12 + 1

. ( y - 1 ) - ( y -1 ) = 13

( x - 1 ) . ( y - 1 ) = 13

=> x - 1 và y - 1 thuộc Ư( 13)

Mà Ư(13 ) = { -13 ; -1 ; 1 ; 13 }

Ta có bảng :\

x -1x    y-1y  
-13-12-10
-10-13-12
121314
131412

\(a,x-5⋮x+2\)

\(\Rightarrow x+2-7⋮x+2\)

\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

x + 2 = 1=> x = -1

x + 2 = -1 => x = -3

.... tương tự nhé ~ 

\(2x+3⋮x-5\)

\(\Rightarrow2x-10+7⋮x-5\)

\(\Rightarrow2\left(x-5\right)+7⋮x-5\)

\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

x - 5 = 1 => x = 6 

.... 

9 tháng 8 2018

a, 5y+5=17-2y+2

5y+2y=17+2-5

7y=14

y=2

b,(3y+1):5=3

3y+1=3.5

3y+1=15

3y=15-1

3y=14

y=14/3

9 tháng 8 2018

a, 5y+5=17-2y+2

5y+2y=17+2-5

7y=14

y=2

b,(3y+1):5=3

3y+1=3.5

3y+1=15

3y=15-1

3y=14

y=\(\frac{14}{3}\)

c,

15+5y=5

5y=5-15

5y=-10

y=(-10):5

y=-2

d, 17+4y=2y+19

4y-2y=19-17

2y=2

y=2:2

y=1

Chú ý: 5y có nghĩa là 5 nhân y

           dấu  chấm (.) thay bằng dấu nhân (x) vì mik nghĩ đây là toán lớp 6

Nhớ tk nha

15 tháng 10 2019

a) Ta có: 3x  = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

           7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Vậy ...

b) Tương tự câu trên

c) Ta có:  \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)

Vậy ....

d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)

e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)

Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)

Nếu ko hiểu cứ hỏi t

22 tháng 11 2020

b,Sửa đề :  \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)

Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)

\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)

Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)

\(x=36,75;y=49;z=122,5\)