Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 tính giá trị biểu thức
( - 25 ) nhân ( -3 ) nhân x với x = 4
\(\left(-25\right).\left(-3\right).4\)
\(=\left(-25\right).4.\left(-3\right)\)
\(=-100.\left(-3\right)=300\)
( -1 ) nhân ( -4 ) nhân 5 nhân 8 nhân y với y =25
\(\left(-1\right).\left(-4\right).5.8.25\)
\(=4.5.8.25=4.25.5.8\)
\(=100.40=40000\)
( 2ab mũ 2 ) : c với a =4 ; b= -6 ; c =12
\(\left(2.4.\left(-6\right)\right)^2:12\)
\(=\left(-48\right)^2:12\)
\(=2304:12=192\)
[ ( -25 ) nhân ( - 27 ) nhân ( -x ) ] : y với x = 4 ; y = -9
\(\left[\left(-25\right).\left(-27\right).\left(-4\right)\right]:-9\)
\(=-2700:\left(-9\right)\)
\(=300\)
(a mũ 2 _ b mũ 2) : ( a + b ) nhân ( a _ b ) với a + 5 , b = -3
\(\left(5^2-\left(-3\right)^2\right):\left(5-3\right).\left(5+3\right)\)
\(=16:2.8\)
\(=8.8=64\)
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
Trả lời:
A = ( 2x - 7 )4
Ta có: \(\left(2x-7\right)^4\ge0\forall x\)
Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2
Vậy GTNN của A = 0 khi x = 7/2
B = ( x + 1 )10 + ( y - 2 )20 + 7
Ta có: \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1 và y - 2 = 0 <=> y = 2
Vậy GTNN của B = 7 khi x = -1 và y = 2
C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20
Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)
Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5
Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5
D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000
Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)
Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3
Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3
E = ( x - y )50 + ( y - 2 )60 + 3
Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\); \(\left(y-2\right)^{60}\ge0\forall y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)
Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2
Vậy GTNN của E = 3 khi x = y = 2
a) Thế x và y ta có:
\(-2.\left(-3\right)-5+11+3.\left(-3\right)\)
\(=6-5+11-9=3\)
b) Thế x và y ta có:
\(2.5-3.\left(-3\right)+5\left(5-\left(-3\right)\right)+15\)
\(=10+9+5\left(5+3\right)+15\)
\(=10+9+40+15=74\)
c) Thế x và y ta có:
\(4.\left(-3\right)-4\left(-3-2.5\right)-7\left(5-2\right)\)
\(=-12-4.\left(-13\right)-7.3\)
\(=-12+52-21=19\)