K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

.

24 tháng 12 2023

a: \(\left(x-3\right)\left(2x^2-3x+4\right)\)

\(=2x^3-3x^2+4x-6x^2+9x-12\)

\(=2x^3-9x^2+13x-12\)

b: \(\left(4x^2y-5xy^2+6xy\right):2xy\)

\(=\dfrac{4x^2y-5xy^2+6xy}{2xy}\)

\(=\dfrac{2xy\cdot2x-2xy\cdot2,5y+2xy\cdot3}{2xy}\)

\(=2x-2,5y+3\)

c: \(\dfrac{x}{2x+4}-\dfrac{2}{x^3+2x}\)

\(=\dfrac{x\left(x^3+2x\right)-2\left(2x+4\right)}{x\left(x^2+2\right)\cdot2\cdot\left(x+2\right)}\)

\(=\dfrac{x^4+2x^2-4x-8}{2x\left(x^2+2\right)\left(x+2\right)}\)

Đề bài là gì sao không ghi rõ?? 

6 tháng 4 2021

\(a. 2x(3x^2-5x+3) = 6x^3-10x^2+6x \)

\(b. -2x(x^2+5x-3) = -2x^3-10x^2+6x\)

c. \(-\dfrac{1}{2}x^2\left(2x^3-4x+3\right) =-x^5+2x^3-\dfrac{3}{2}x^2\)
\(d.\left(2x-1\right)\left(x^2+5-4\right)=\left(2x-1\right)\left(x^2+1\right)=2x^3+2x-x^2-1\)
e. \(-\left(5x-4\right)\left(2x+3\right)=10x^2+15x-8x-12=-10x^2+7x-12\)

f.\(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)

g.\(\left(3x-4\right)\left(x+4\right)+\left(5-x\right)\left(2x^2+3x-1\right)=3x^2+12x-4x-16+10x^2+15x-5-2x^3-3x^2+x=-2x^3+10x^2+24x-21\)

e. \(7x\left(x-4\right)-\left(7x+3\right)\left(2x^2-x+4\right)=7x^2-28x-14x^3+7x^2-28x-6x^2+3x+-12=-14x^3+8x^2-53x-12\)

 

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

10 tháng 8 2021

sau bạn đăng tách ra cho mn cùng giúp nhé 

a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)

b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)

c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)

d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)

10 tháng 8 2021

e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)

f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)