Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
\(\text{-12(x-5)+7(3-x)=5 }\)
\(-12x+60+21-7x=5\)
\(-12x-7x=5-21-60\)
\(-19x=-76\)
\(x=-76:\left(-19\right)\)
\(x=4\)
\(\text{ 30(x+2)-6(x-5)-24x=100}\)
\(30x+60-6x+30-24x=100\)
\(30x-6x-24x=100-30-60\)
\(0=10\)
\(\Rightarrow x\)ko tồn tại
\(\text{(x+1-5)+7(3-x)=5 }\)
\(x+1-5+21-7x=5\)
\(x-7x=5-21+5-1\)
\(-6x=-12\)
\(x=\left(-12\right):\left(-6\right)\)
\(x=2\)
\(\text{(x+1)+(x+3)+(x+5)+........+(x+99)=0}\)
\(\text{(x+1)+(x+3)+...+(x+99)=0}\)
tổng các số hang là\(\frac{\left(99+1\right)}{2}=50\)(số hạng)
=>\(\text{(x+1)+(x+3)+...+(x+99)=0}\)<=> \(\text{50.x+(1+3+5+..+99)=0}\)
<=>\(\text{50.x+(99+1)}\)\(.\frac{50}{2}=0\)<=> \(\text{50.x+2500=0=}\)>\(x=\frac{-2500}{50}=-50\)
chúc bạn học tốt
a.-12 ( x-5 ) +7 (3-x) = 5
-12x +60 + 21 - 7x =5
60+21-5 = 12x + 7x
76 = 19x
x = 4
b.30(x +2) - 6(x-5) -24x = 100
30x+60 - 6x -30-24x = 100
60-30-100 = 30x -6x - 24x
-70 = 0x
x = -70
a)-12.(x-5)+7.(3-x)=15
-12x+60+21-7x=15
-19x+81=15
-19x=15-81
-19x=-66
=>x=66/19
Giải:
a) \(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(-12x+60+21-7x=5\)
\(-12x-7x=5-60-21\)
\(-19x=-76\)
\(x=-76:-19\)
\(x=4\)
b) \(30\left(x+2\right)-6\left(x-5\right)-24x=100\)
\(30x+60-6x+30-24x=100\)
\(30x-6x-24x=100-60-30\)
\(0x=10\)
Vì ko có số nào mà nhân với 0 mà đc kết quả lớn hơn 0 hay bé hơn 0 mà khi nhân với 0 ta đc kết quả 0 nên \(x\in\) ∅
a) -12x + 60 + 21 - 7x =15
-12x - 7x + 81 = 15
-19x = 15 - 81
-19x = -66
x= -66 : (-19)
x = \(\frac{66}{19}\)
Vậy x = \(\frac{66}{19}\)
b) 30x + 60 - 6x + 30 - 24x= 100
30x - 6x - 24x + 60 +30= 100
x ( 30 - 6- 24 ) + 90 = 100
x. 0 + 90 =100
x. 0 =10 ( vô lý )
\(\Rightarrow\) x \(\in\phi\)
a,có 2 trường hợp:[x-2=0=>x=0+2=>x=2
[5-x=0=>x=0+5=>x=5
Vậy x thuộc {2;5}