K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

a) \(x:\dfrac{1}{2}=\left(-\dfrac{1}{2}\right)^4\Rightarrow x:\dfrac{1}{2}=\dfrac{1}{16}\Rightarrow x=\dfrac{1}{16}.2=\dfrac{1}{8}\)

b) \(\left(-\dfrac{4}{7}\right)^5.x=\left(\dfrac{4}{7}\right)^7\Rightarrow-\left(\dfrac{4}{7}\right)^5.x=\left(\dfrac{4}{7}\right)^7\Rightarrow x=-\left(\dfrac{4}{7}\right)^7:\left(\dfrac{4}{7}\right)^5\Rightarrow x=-\left(\dfrac{4}{7}\right)^2=-\dfrac{16}{49}\)

10 tháng 8 2023

Đính chính câu a

\(x:\dfrac{1}{2}=\dfrac{1}{16}\Rightarrow x=\dfrac{1}{16}.\dfrac{1}{2}=\dfrac{1}{32}\)

2 tháng 8 2020

a ) \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{\left(-11\right)}{70}\right|\)

=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)

=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{19}{70}\right|\)

=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\frac{19}{70}=\frac{3}{35}\)

=> \(\frac{2}{5}+x+\frac{3}{2}=\frac{3}{7}-\frac{3}{35}=\frac{12}{35}\)

=> \(\frac{2}{5}+x=\frac{12}{35}-\frac{3}{2}=-\frac{81}{70}\)

=> \(x=-\frac{81}{70}-\frac{2}{5}=-\frac{109}{70}\)

b) \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)

=> \(\frac{3}{4}x-6=\frac{5}{2}\)

=> \(\frac{3}{4}x=\frac{17}{2}\)

=> \(x=\frac{17}{2}:\frac{3}{4}=\frac{34}{3}\)

Câu c,d tự làm nhé

2 tháng 8 2020

a. \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{-11}{70}\right|\)

\(\Rightarrow\frac{3}{7}-\left(\frac{19}{10}+x\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)

\(\Rightarrow\frac{3}{7}-\frac{19}{10}-x=\frac{5}{14}-\left|\frac{19}{70}\right|=\frac{5}{14}-\frac{19}{70}\)

\(\Rightarrow-\frac{103}{70}-x=\frac{3}{35}\)

\(\Rightarrow x=-\frac{103}{70}-\frac{3}{35}\)

\(\Rightarrow x=-\frac{109}{70}\)

b. \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)

\(\Rightarrow\frac{3}{4}\left(x-8\right)=\frac{5}{7}.\frac{7}{2}=\frac{5}{2}\)

\(\Rightarrow x-8=\frac{10}{3}\)

\(\Rightarrow x=\frac{34}{3}\)

c.  \(\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)

\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)

\(\Rightarrow\frac{1}{2}=\frac{2}{3}-7x-4x=\frac{2}{3}-11x\)

\(\Rightarrow11x=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(\Rightarrow x=\frac{1}{66}\)

d. \(4\left(\frac{1}{2}-x\right)-5\left(x-\frac{3}{10}\right)=\frac{7}{4}\)

\(\Rightarrow2-4x-5x+\frac{3}{2}=\frac{7}{4}\)

\(\Rightarrow2-9x=\frac{1}{4}\)

\(\Rightarrow9x=\frac{7}{4}\)

\(\Rightarrow x=\frac{7}{36}\)

27 tháng 9 2024

Bài 1:

a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)

     \(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)

     \(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)

     \(x=-\) \(\dfrac{49}{56}\)

Vậy \(x=-\dfrac{49}{56}\)

b; 6 - \(x\) = - \(\dfrac{3}{4}\)

         \(x\) = 6 + \(\dfrac{3}{4}\)

         \(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)

         \(x=\dfrac{27}{4}\)

Vậy \(x=\dfrac{27}{4}\) 

c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)

              \(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)

              \(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)

               \(x=\dfrac{19}{20}\)

Vậy \(x=\dfrac{19}{20}\) 

27 tháng 9 2024

      Bài 1:

d; - 6 - \(x\) = - \(\dfrac{3}{5}\)

      \(x\)   = - 6 + \(\dfrac{3}{5}\)

       \(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)

       \(x=-\dfrac{27}{5}\)

Vậy \(x=-\dfrac{27}{5}\)

e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)

             \(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)

             \(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)

              \(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)

               \(x=\dfrac{22}{21}\)

Vậy \(x=\dfrac{22}{21}\) 

f; - 8 - \(x\) =  - \(\dfrac{5}{3}\)

          \(x\) = \(-\dfrac{5}{3}\) + 8

         \(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)

         \(x\) = \(\dfrac{-19}{3}\)

Vậy \(x=-\dfrac{19}{3}\) 

 

            

 

22 tháng 6 2016

\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

   =  \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

    = \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

     = \(\frac{1}{4}+\frac{1}{2}\)

      =  \(\frac{3}{4}\)

b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)

    =\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)

   = \(-\frac{35}{27}+\frac{47}{21}\)

   =        \(\frac{178}{189}\)

c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)

  = \(\frac{117}{13}-\frac{311}{65}\)

 =       \(\frac{274}{65}\)

d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)

=     \(\frac{1}{3}+\frac{5}{2}\)

=         \(\frac{17}{6}\)

26 tháng 9 2016

a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\) 

\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=-4x+1\end{cases}}\Rightarrow\orbr{\begin{cases}4x-\frac{3}{2}x-1=\frac{1}{2}\\-4x-\frac{3}{2}x+1=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=\frac{3}{2}\\-\frac{11}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\) 

26 tháng 9 2016

phần b ở đề bài mình ghi sai, là bằng 0 chứ ko phải bằng 10

28 tháng 3 2020

\(a,x.\frac{-3}{7}=\frac{4}{21}\)

\(x=\frac{4}{21}:\frac{-3}{7}\)

\(x=\frac{-4}{9}\)

\(b,\frac{-4}{7}:x=\frac{2}{5}\)

\(x=\frac{-4}{7}:\frac{2}{5}\)

\(x=\frac{-10}{7}\)

\(c,x+\frac{1}{12}=\frac{-3}{8}\)

\(x=\frac{-3}{8}-\frac{1}{12}\)

\(x=\frac{-11}{24}\)

\(d,\frac{2}{15}-x=\frac{-3}{10}\)

\(x=\frac{2}{15}+\frac{3}{10}\)

\(x=\frac{13}{30}\)

28 tháng 3 2020

\(e,-x+\frac{4}{5}=\frac{1}{2}\)

\(-x=\frac{-3}{10}\)

\(x=\frac{3}{10}\)

\(f,\frac{3}{4}.\left(x+1\right)-\frac{1}{2}=\frac{3}{7}\)

\(\frac{3}{4}.\left(x+1\right)=\frac{13}{14}\)

\(x+1=\frac{26}{21}\)

\(x=\frac{5}{21}\)

\(\frac{-3}{2}-2x+\frac{3}{4}=-2\)

\(\frac{-3}{2}-2x=\frac{-11}{4}\)

\(2x=\frac{-3}{2}+\frac{11}{4}\)

\(2x=\frac{-17}{4}\)

\(x=\frac{-17}{8}\)

\(h,-x+\frac{4}{5}=\frac{1}{2}\)

\(-x=\frac{-3}{10}\)

\(x=\frac{3}{10}\)

chúc bạn học tốt !!!

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

19 tháng 7 2021

a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)

\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)

\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)

b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)

\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)

c,  thiếu đề 

d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)

\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)

NM
19 tháng 7 2021

a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)

\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)

b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)

\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)

c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)

\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)

d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)

25 tháng 7 2017

1.

a) \(\frac{-7}{9}.2\frac{3}{4}=\frac{-7}{9}.\frac{11}{4}=\frac{-77}{36}\)

b) \(\frac{2}{3}+\frac{1}{3}.\frac{-2}{5}=\frac{2}{3}+\frac{-2}{15}=\frac{8}{15}\)

c) \(\frac{3}{4}.15\frac{1}{3}-\frac{3}{4}.43\frac{1}{3}=\frac{3}{4}.\frac{46}{3}-\frac{3}{4}.\frac{130}{3}=\frac{23}{2}-\frac{65}{2}=-21\)

d) \(\left(-49,1\right).\frac{13}{27}-58,9.\frac{13}{27}=\frac{13}{27}.\left(-49,1-58,9\right)=\frac{13}{27}.\left(-108\right)=-52\)

e) \(0,375:\left(-4,5\right)=\frac{-1}{12}\)

f) \(3\frac{1}{7}:\left(-1\frac{3}{7}\right)=\frac{22}{7}:\frac{-10}{7}=\frac{-11}{5}\)

g) \(9\frac{1}{3}:4\frac{2}{3}-2=\frac{28}{3}:\frac{14}{3}-2=2-2=0\)

h) \(\left(7\frac{3}{4}:0,3125+4,5.2\frac{2}{45}\right):\left(-8,5\right)=\left(\frac{31}{4}:\frac{5}{16}+\frac{9}{2}.\frac{92}{45}\right):\frac{-17}{2}=\left(\frac{124}{5}+\frac{46}{5}\right):\frac{-17}{2}=34:\frac{-17}{2}=-4\)

25 tháng 7 2017

Bài 1 : Tính:

a)

\(\frac{-7}{9}.2\frac{3}{4}=\frac{-7}{9}.\frac{11}{4}=\frac{-77}{36}\)

b) 

\(\frac{2}{3}+\frac{1}{3}.\frac{-2}{5}=\frac{2}{3}+\frac{-2}{15}=\frac{10}{15}+\frac{-2}{15}=\frac{8}{15}\)

c)

\(\frac{3}{4}.15\frac{1}{3}-\frac{3}{4}.43\frac{1}{3}=\frac{3}{4}.\frac{46}{3}-\frac{3}{4}.\frac{130}{3}\)\(=\frac{23}{2}-\frac{65}{2}=\frac{-42}{2}=-21\)

....

Tự lm tiếp dạng như v

Bài 2 : 

\(A=\frac{-6}{11}.\frac{7}{10}.\frac{11}{-6}.-20=\left(\frac{-6}{11}.\frac{11}{-6}\right).\left(\frac{7}{10}.-20\right)\)\(=1.\left(-14\right)=-14\)

.....

Bài 3 : 

\(\frac{3}{7}.x-\frac{2}{5}.x=\frac{-17}{35}\)

\(\Leftrightarrow\frac{3}{7}-\frac{2}{5}.x=\frac{-17}{35}\)

\(\Leftrightarrow\frac{1}{35}x=\frac{-17}{35}\)

\(\Leftrightarrow x=\frac{-17}{35}:\frac{1}{35}\)

\(\Leftrightarrow x=\frac{-17}{35}.35=-17\)