K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Để học tốt Toán 7 | Giải toán lớp 7

Ta vẽ ΔABC và 3 đường trung tuyến AM, BN, CP

Trong đó : M, N, P lần lượt là trung điểm BC, AC, AB

11 tháng 8 2015

MN^2 + MP^2 = 6^2 + 8^2 = 100

NP^2 = 10^2 = 100 

=> MN^2 + MP^2 = NP^2 

TAm giác MNP có MN^2 + MP^2 = NP^2 => tam giác MNP vuông tại P

CÓ MD là trung tuyến => MD = 1/2 NP = 1/2 . 10 = 5 

Smnd = 1/2 . MN.MP = 1/2MK . NP

 <=> MN . MP = MK . NP => 6.8 = 10 . MK => MK = 6.8 : 10 = 4,8 

 

11 tháng 8 2015

trời sao toàn bài hình vậy

17 tháng 4 2021
chịu mày giải cho tao đi
17 tháng 4 2021

ngta bài khó , ngta mới hỏi rồi lại hỏi lại ngta là sao ?

10 tháng 6 2018

A B C D E G N M P F

Gọi AM, BN, CP là các đường trung tuyến của ∆ABC cắt nhau tại G.

                        AG = GD (gt)

                        AG = 2GM (suy ra từ tính chất đường trung tuyến)

Nên            GD  = 2GM

                   GD = GM + MD

=> GM = MD

Xét ∆BMD và ∆CMG:

                   BM = CM (gt)

\(\widehat{BND}=\widehat{CMG}\left(\text{đối đỉnh}\right)\)

                    MD = GM (chứng minh trên)

Do đó: ∆BMD = ∆CMG (c.g.c)

=> BD = CG

\(CG=\frac{2}{3}CP\left(\text{tính chất đường trung tuyến}\right)\)

\(\Rightarrow BD=\frac{2}{3}CP\) (1)

     \(BG=\frac{2}{3}BN\left(\text{tính chất đường trung tuyến}\right)\) (2)

    \(AG=\frac{2}{3}AM\left(\text{tính chất đường trung tuyến}\right)\)

\(\Rightarrow GD=\frac{2}{3}AM\) (3)

Từ (1), (2) và (3) suy ra các cạnh của \(\Delta BGD=\frac{2}{3}\) các đường trung tuyến của \(\Delta ABC\)

GM = MD (chứng minh trên)

Nên BM = MD là đường trung tuyến của ∆BGD

\(BM=\frac{1}{2}BC\) (4)

Kẻ đường trung tuyến GE và DF của ∆BGD 

\(\Rightarrow FG=\frac{1}{2}BG\)

\(GN=\frac{1}{2}BG\left(\text{tính chất đường trung tuyến}\right)\) 

Nên FN = GN

Xét ∆DFG và ∆ANG:

AG = GD (gt)

\(\widehat{DGF}=\widehat{AGN}\left(\text{đối đỉnh}\right)\)

GF = GN (chứng minh trên)

Do đó ∆DFG  = ∆ANG (c.g.c)

=> DF = AN            

\(AN=\frac{1}{2}AC\left(gt\right)\)

\(\Rightarrow DF=\frac{1}{2}AC\) (5)

  BD = CG (chứng minh trên)

\(ED=\frac{1}{2}BD\left(\text{vì E là trung điểm BD}\right)\)

\(GP=\frac{1}{2}CG\left(\text{tính chất đường trung tuyến}\right)\)

=> ED = GP

∆BDM = ∆CGM (chứng minh trên)

\(\Rightarrow\widehat{BDM}=\widehat{CGM}\text{ hay }\widehat{CGM}\)

\(\widehat{CGM}=\widehat{PGA}\left(\text{đối đỉnh}\right)\)

\(\Rightarrow\widehat{EDG}=\widehat{PGA}\)

             AG = GD (gt)

=> ∆PGA = ∆EDG (c.g.c)

=> GE = AP

\(\Rightarrow GE=\frac{1}{2}AB\)(6)

Từ (4),(5) và (6) suy ra các đường trung tuyến của ∆BGD bằng một nửa cạnh của ∆ABC.

9 tháng 8 2018

KHÔNG BIẾT VÌ HỌC LỚP 6

8 tháng 4 2017

Tam giác ABC có cạnh huyền PC là 1 cạnh của tam giác PQC

Xét tam giác QMC và tam giác BMN có :

BM=MC

Góc BMN=góc QMC

QM=MN

=>Tam giác BMN=tam giác QMC

=>BN=QC(hai góc tương ứng)

MÌNH CHỈ GIẢI ĐC ĐẾN ĐÂY THÔI

8 tháng 7 2017

A N C D M E B P G F

a) Gọi AM , BN , CP là các đường trung tuyến của \(\Delta ABC\) . Ta có GD = AG = 2GM và GD = GM + MD nên GM = MD

\(\Delta BMD=\Delta CMG\left(c.g.c\right)\)

\(\Rightarrow BD=CG=\dfrac{2}{3}CP\) (1)

Ta có \(BG=\dfrac{2}{3}BN\) (2)

\(GD=AG=\dfrac{2}{3}AM\) (3)

Từ (1) , (2) , (3) suy ra các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các đường trung truyến của \(\Delta ABC\)

b) Gọi CE , DF là các đường trung tuyến của \(\Delta BGD\) . Từ đây tự chứng minh \(BM=\dfrac{1}{2}BC;GE=\dfrac{1}{2}AB;DF=AN=\dfrac{1}{2}AC\)