Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) f(1) + 2f(-2) = a - 1 + 2(a - 1).(-2) = a - 1 - 4a + 4 = -3a + 3 = -3(a - 1) = f(-3) (đpcm)
Lời giải:
ĐTHS \((d): y=\frac{1}{2}x\)
b) Ta thấy \(1=\frac{1}{2}.2\Rightarrow A(2;1)\in (d)\)
c)
Vì \(O(0;0)\) có \(0=\frac{1}{2}.0\Rightarrow O\in (d)\)
Vậy đường thẳng đi qua O,A chính là đường thẳng d của đồ thị hàm số \(y=\frac{1}{2}x\)
Khi đó nếu B thuộc OA thì \(B\in (d)\Rightarrow y_0=\frac{1}{2}x_0\)
Ta có:
\(\frac{y_0-2}{x_0-4}=\frac{\frac{x_0}{2}-2}{x_0-4}=\frac{x_0-4}{2(x_0-4)}=\frac{1}{2}\)
d)
\(x_0=5\Rightarrow y_0=\frac{5}{2}\)
Từ các tọa độ đã cho suy ra \(OC=5; BC=\frac{5}{2}\)
Vì \(C=(5;0)\Rightarrow C\in (Ox)\Rightarrow OC\) là một đoạn thẳng thuộc trục hoành
\(\Rightarrow OC\perp Oy\) (1)
Lại có: \(x_B=x_C=5\Rightarrow BC\) là một đoạn thẳng song song với trục tung
\(\Rightarrow BC\parallel Oy\) (2)
Từ (1);(2) suy ra \(OC\perp BC\Rightarrow S_{OBC}=\frac{OC.BC}{2}=\frac{5.\frac{5}{2}}{2}=\frac{25}{4}\)
a) Ta có : \(y=f\left(x\right)=2x+1\)
Thay \(f\left(-\frac{1}{2}\right)\)vào biểu thức 2x + 1 ta có : \(f\left(-\frac{1}{2}\right)=2\cdot\left(-\frac{1}{2}\right)+1=0\)
b) Với x = 1 thì y = (-2).1 = -2
Ta được \(A\left(1;-2\right)\)thuộc đồ thị hàm số y = -2x
Đường thẳng OA là đồ thị hàm số y = -2x
c) Thay \(A\left(3;9\right)\)vào đồ thị hàm số y = 3x ta có :
\(y=3\cdot3=9\)(Đẳng thức đúng)
Vậy điểm A thuộc đồ thị hàm số y = 3x
Bài 9:
b: Điểm A thuộc đồ thị vì \(y_A=4=-2\cdot\left(-2\right)=-2\cdot x_A\)
Bài 10:
a: Thay x=1 và y=-3 vào (d), ta được:
\(a\cdot1=-3\)
hay a=-3
vì đồ thị hàm số đi qua M(-2; 6 )
nên: x= -2 y=6
thay vô hàm số trên ta đc : m= 4
tick rồi giải nốt
a,
b, Thay x = -3 ; y = 1 vào hàm số trên ta được :
\(-3.\frac{-1}{3}=1\)* đúng *
Vậy điểm M thuộc đồ thị hàm số
Thay x = 6 ; y = 2 vào hàm số trên ta được :
\(6.\frac{-1}{3}=2\)* sai *
Vậy điểm N ko thuộc đồ thị hàm số
Thay x = 9 ; y = -3 vào hàm số trên ta được :
\(-3=-\frac{9}{3}\)* đúng *
Vậy điểm P thuộc đồ thị hàm số
Ps : bài 1 mình vẫn ko hiểu đề lắm, có phải đề là tìm hoành độ ko ?