K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

a) Với m=2 thì hàm số đã cho trở thành: \(y=2x+2\)

-Nếu \(x=0\Rightarrow y=2\) . Ta có điểm \(\left(0;2\right)\in Oy\)

- Nếu \(y=0\Rightarrow x=-1\). Ta có điểm \(\left(-1;0\right)\in Ox\)

Đường thẳng đi qua 2 điểm \(\left(0;2\right);\left(-1;0\right)\) là đồ thị của hàm số \(y=2x+2\)

O 2 1 y=2x+2

b) Vì: \(\left(1\right)\cap Ox=\left\{A\right\}\) . Nên:

\(mx+2=0\Leftrightarrow x=\frac{-2}{m}\)

=> \(OA=\left|-\frac{2}{m}\right|\)

Vì: \(\left(1\right)\cap Oy=\left\{B\right\}\). Nên: \(y=2\)

=> \(OB=2\)

Vì: (1) cắt các trục tọa độ 1 tam giác cân nên:

\(OA=OB\)

\(\Leftrightarrow\left|-\frac{2}{m}\right|=2\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-\frac{2}{m}=2\\-\frac{2}{m}=-2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}m=-1\\m=1\end{array}\right.\)

 

 

12 tháng 6 2018

a )

Đồ thị parapol P đi qua điểm M khi a là nghiệm của phương trình :

\(2=a.2^2\)

\(\Leftrightarrow4a=2\)

\(\Leftrightarrow a=\dfrac{1}{2}\)

23 tháng 11 2019

Cho y1=y2 giải tìm x rồi thay x0 tìm y0

NV
3 tháng 5 2019

Phương trình hoành độ giao điểm: \(x^2+2ax+4a=0\)

\(\Delta'=a^2-4a>0\Rightarrow\left[{}\begin{matrix}a< 0\\a>4\end{matrix}\right.\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2a\\x_1x_2=4a\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=3\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)

\(\Leftrightarrow4a^2-8a+8\left|a\right|=9\)

- Với \(a>0\) \(\Rightarrow4a^2=9\Rightarrow a^2=\frac{9}{4}\Rightarrow a=\frac{3}{2}< 4\left(l\right)\)

- Với \(a< 0\Rightarrow4a^2-16a-9=0\Rightarrow\left[{}\begin{matrix}a=-\frac{1}{2}\\a=\frac{9}{2}>0\left(l\right)\end{matrix}\right.\)

Vậy \(a=-\frac{1}{2}\)

20 tháng 1 2019

a ) Phương trình hoành độ của đường thẳng (d) và parapo (P) là :

\(x^2=\left(k-1\right)x+2\)

\(\Leftrightarrow x^2-\left(k-1\right)x-2=0\)

\(\Delta=\left(k-1\right)^2+8=k^2-2k+9>0\)

Vì đen - ta lớn hơn 0 nên với mọi k thì (d) luôn cắt (P) tại 2 điểm phân biệt .

b ) Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=k-1\\x_1x_2=-2\end{matrix}\right.\)

Mà : \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(k-1\right)^2+4\\y_1y_2=\left(x_1x_2\right)^2=4\end{matrix}\right.\)

Theo đề bài \(y_1+y_2=y_1y_2\)

\(\Rightarrow\left(k-1\right)^2+4=4\)

\(\Rightarrow k=1\)