Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Tọa độ A là;
y=0 và x+1=0
=>x=-1 và y=0
Tọa độ B là:
y=0 và x*căn 3-3=0
=>x=căn 3 và y=0
Tọa độ C là:
x+1=xcăn 3-3 và y=x+1
=>\(x=\dfrac{-4}{-\sqrt{3}+1}=2+2\sqrt{3}\) và y=3+3căn 3
A(-1;0); B(căn 3;0); \(C\left(2+2\sqrt{3};3+3\sqrt{3}\right)\)
\(AC=\sqrt{\left(2+2\sqrt{3}+1\right)^2+\left(3\sqrt{3}\right)^2}\simeq8,29\)
\(AB=\sqrt{\left(\sqrt{3}+1\right)^2}\simeq2,73\)
\(BC=\sqrt{\left(2+2\sqrt{3}-\sqrt{3}\right)^2+\left(3+3\sqrt{3}\right)^2}\simeq9,0\left(cm\right)\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq-\dfrac{245}{2487}\)
=>góc A=96 độ
\(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{271}{675}\)
=>góc B=67 độ
=>góc C=17 độ
a, HS Tự làm
b, Tìm được C(–2; –3) là tọa độ giao điểm của d 1 và d 2
c, Kẻ OH ⊥ AB (CH ⊥ Ox)
S A B C = 1 2 C H . A B = 9 4 (đvdt)
a:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\3x-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=0\end{matrix}\right.\)
Vậy: A(1/3;0)
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\-x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\-x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3\end{matrix}\right.\)
Vậy: B(3;0)
Tọa độ C là:
\(\left\{{}\begin{matrix}3x-1=-x+3\\y=3x-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x=4\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\cdot1-1=2\end{matrix}\right.\)
Vậy: C(1;2)
c: Gọi \(\alpha\) là góc tạo bởi (d1) với trục Ox
\(tan\alpha=a=3\)
=>\(\alpha\simeq71^033'\)
b: Tọa độ A là:
x+2=-x+4 và y=x+2
=>x=1 và y=3
Tọa độ B là:
y=0 và x+2=0
=>x=-2 và y=0
Tọa độ C là
y=0 và -x+4=0
=>x=4 và y=0
c: A(1;3); B(-2;0); C(4;0)
\(AB=\sqrt{\left(-2-1\right)^2+\left(0-3\right)^2}=3\sqrt{2}\)
\(AC=\sqrt{\left(4-1\right)^2+\left(0-3\right)^2}=3\sqrt{2}\)
\(BC=\sqrt{\left(4+2\right)^2+\left(0-0\right)^2}=6\)
Vì AB^2+AC^2=BC^2 và AB=AC
nên ΔABC vuông cân tại A
\(b,\) Tọa độ giao điểm 2 đường thẳng là:
\(\left\{{}\begin{matrix}y=-2x+4\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=-2x+4\\y=x+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\Leftrightarrow A\left(1;2\right)\)
Tọa độ giao điểm 2 đường thẳng với trục hoành là
\(\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}y=-2x+4\\y=x+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}4-2x=0\\x+1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow B\left(2;0\right),C\left(-1;0\right)\)
b) Phương trình hoành độ giao điểm của (D1) và (d2) là:
-x+4=x-4
\(\Leftrightarrow-2x=-8\)
hay x=4
Thay x=4 vào (d1), ta được:
y=-4+4=0
Thay x=0 vào (d1), ta được:
\(y=-0+4=4\)
Thay x=0 vào (d2), ta được:
\(y=0-4=-4\)
Vậy: A(0;4); B(0;-4); C(4;0)