K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

test

30 tháng 10 2018

\(S=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+..+\frac{5}{97.99}\)

\(=\frac{5}{2}.\left(5+\frac{5}{3}+\frac{5}{5}+\frac{5}{7}+...+\frac{5}{97}+\frac{5}{99}\right)\)

\(=\frac{5}{2}.\left(5+\frac{5}{99}\right)\)

\(=\frac{5}{2}.\frac{500}{99}\)

\(=\frac{1250}{99}\)(có gì sai sót xin bỏ qua cho T^T)

13 tháng 8 2016

Đặt biểu thức là A

=> \(A=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\right)\)

=> \(A=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

=> \(A=\frac{5}{2}.\frac{100}{101}\)

=> \(A=\frac{250}{101}\)

13 tháng 8 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

30 tháng 7 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

21 tháng 10 2016

a cong tru loan nen ko hieu

b

A=5/1.4+5/4.7+..5/100.103

3/5.A=3/1.4+3/4.7+..+3/100.103

=1/1-1/4+1/4-1/7+...+1/100-1/103

=1-1/103=102/103

A=(5.102)/(3.103)=5.34/103

7 tháng 9 2016

\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)

7 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(S=\frac{4}{9}-\frac{1}{5}\)

\(S=\frac{11}{45}\)

31 tháng 3 2017

Ta có : 1,12(32) = 1,12 + 0,0032 

Mà 0,0032 = 32/9990 

Nên : 1,12(32) = 28/25 + 32/9990 = 556/495

31 tháng 3 2017

Nhập vào máy : Sích mak

công thức (2n - 1) ( 2n + 1) x chạy từ 1 đến 15 ok 

9 tháng 10 2018

Bài 1:

\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)

\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(=2.\frac{32}{99}=\frac{64}{99}\)

Bài 2:

a) \(2.4^x-18=110\)

\(\Leftrightarrow2.4^x=128\)

\(\Leftrightarrow4^x=64\)

\(\Leftrightarrow4^x=4^3\Leftrightarrow x=3\)

Vậy x = 3

b) \(\left(\frac{3}{2}x-1\right)^5=1\)

\(\Leftrightarrow\frac{3}{2}x-1=1\)

\(\Leftrightarrow\frac{3}{2}x=2\)

\(\Leftrightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3}\)

9 tháng 10 2018

a) 4/3.5 + 3/5.7 + .... + 4/97.99

= 4( 1/3.5 +1/5.7 + ... + 1/97.99 )

= 4 . 1/2 . 2 ( 1/3.5 +1/5.7 + ... + 1/97.99 )

= 4/2 ( 2/3.5 + 2/5.7 + .... + 2/97.99 )

= 2 ( 5-3/3.5 + 7-5/5.7 + ..... + 99-97/97.99 )

= 2 (5/3.5 - 3/3.5 + 7/5.7 - 5/5.7 + .... + 99/97.99 - 97/97.99 )

= 2 ( 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/97 - 1/99 )

= 2 ( 1/3 -1/99 )

= 2 (33/99 - 1/99 )

= 2 . 32/99

= 32.2/99

=64/99

A = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

2A = 2 . \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

2A = \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

2A = \(\frac{1}{3}-\frac{1}{99}\)

2A = \(\frac{32}{99}\)

A = \(\frac{32}{99}\div2\)

A =\(\frac{16}{99}\)

_HT_