Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính nhanh:
\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\)\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(=\left(\frac{1}{1}+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{8}\right)\)\(+\left(\frac{1}{3}+\frac{1}{7}\right)+\left(\frac{1}{4}+\frac{1}{6}\right)+\frac{1}{5}\)
\(=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{5}\)
\(=\frac{4}{10}+\frac{2}{5}=\frac{2}{5}+\frac{1}{5}=\frac{3}{5}\)
tks giúp mk nha! cảm ơn nhiều ạ...
Đặt \(A=2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=2-\frac{1}{9}=\frac{18}{9}-\frac{1}{9}=\frac{17}{9}\)
b) 1/3+1/3^2+1/3^3+1/3^4+1/3^5 (goi tong bang M)
3M=1+1/3+1/3^2+1/3^3+1/3^4
3M-M=1-1/3^5
2M=242/243
M=242/243*1/2=121/243
ta có : A=1/2+1/4+..+1/1024
=> A=1/21+1/22+..+1/210
=> A.2=(1/21+1/22+..+1/210).2
=> A.2=1+1/21+1/22+..+1/29
=> 2A-A=(1+1/21+1/22+..+1/29)-(1/21+1/22+..+1/210)
=> A=1-1/210
3636/4545+x=4848/1515
x=4848/1515-3636/4545
x=14544/4545-3636/4545
x=10908/4545
3535/5050-x=8/25
x=3535/5050-1616/5050
x=1919/5050
1/4*5+1/5*6+1/6*7+1/7*8=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
=1/4-1/8
1/8
Ta có:
\(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10}{30}-\frac{1}{30}-\frac{6}{30}-\frac{3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10-1-6-3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(0\)
= \(0\)
\(A=1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)
\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1+\frac{1}{2}-\frac{1}{11}=\frac{31}{22}\)
\(A=1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(A=1+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(A=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=1+\frac{1}{2}-\frac{1}{11}\)
\(A=\frac{31}{22}\)
Vậy \(A=\frac{31}{22}\)
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+..+\frac{1}{135}\)
\(=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}+\frac{1}{84}+\frac{1}{108}+\frac{1}{135}\)
\(=\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{3\times6}+\frac{1}{6\times5}+\frac{1}{5\times9}+\frac{1}{9\times7}+\frac{1}{7\times12}+\frac{1}{12\times9}+\frac{1}{9\times15}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{9}+\frac{1}{9}-\frac{1}{15}\)
( gạch bỏ các phân số giống nhau )
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
CHÚC BẠN HỌC TỐT!!!!!