Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
1) \(B=\sqrt{x-1+2\sqrt[3]{x\sqrt{x}+3x+3\sqrt{x}+1}}\)
\(B=\sqrt{x-1+2\sqrt[3]{\sqrt{x^3}+3x+3\sqrt{x}+1}}\)
\(B=\sqrt{x-1+2\sqrt[3]{\left(\sqrt{x}+1\right)^3}}\)
\(B=\sqrt{x-1+2\left(\sqrt{x}+1\right)}\)
\(B=\sqrt{x-1+2\sqrt{x}+2}\)
\(B=\sqrt{\left(\sqrt{x}+1\right)^2}\)
\(B=\sqrt{x}+1\)
\(B=\sqrt{5}+1\)
2) Sửa đề :
\(C=\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}\)
\(C=\sqrt{x+2\sqrt{x\left(x-1\right)}+x-1}+\sqrt{x-2\sqrt{x\left(x-1\right)}+x-1}\)
\(C=\sqrt{\left(\sqrt{x}+\sqrt{x-1}\right)^2}+\sqrt{\left(\sqrt{x}-\sqrt{x-1}\right)^2}\)
\(C=\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\)
\(C=2\sqrt{x}\)
\(C=2\cdot\sqrt{4}=4\)