K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)

\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)

\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)

ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)

\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)

\(\Leftrightarrow x^2+2xy+y^2=z^2\)

\(\Leftrightarrow\left(x+y\right)^2=z^2\)

\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)

Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)

14 tháng 5 2018

a, (M-1)/70-71=m

m=(71^9+71^8....71+1)

71m=71^10+...71^2+71

70m=71^10-1

(M-1)/70=71^10+70

M-1=70(71^10+70)

M=70(71^10+70)-1

6 tháng 12 2017

Bài 1

\(a^2-2a+6b+b^2=-10\)

<=>\(a^2-2a+1+b^2+6b+9=0\)

<=>\((a-1)^2+(b+3)^2=0\)

Ta lại có: \((a-1)^2\ge0 \)

\((b+3)^2\ge0\)

=> \((a-1)^2+(b+3)^2\ge0\)

\((a-1)^2+(b+3)^2=0\)

=>(a-1)2=0=>a=1

(b+3)2=0=>b=-3

Vậy a=1,b=-3

Bài 2

Ta có: \(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}= \frac{x+y}{z}+1+\frac{x+z}{y}+1+ \frac{y+z}{x}+1 -3 \)

\(=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3=(x+y+z)( \frac{1}{z}+\frac{1}{x}+\frac{1}{y})-3=0-3=-3 \)

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Lời giải:

a) Vì $abc=1$ nên ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc.+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+c+1}=1\)

(đpcm)

b)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow \left\{\begin{matrix} x=ka\\ y=kb\\ z=kc\end{matrix}\right.\)

\(x+y+z=ka+kb+kc=k(a+b+c)=k\)

\(x^2+y^2+z^2=k^2a^2+k^2b^2+k^2c^2=k^2(a^2+b^2+c^2)=k^2\)

\(\Rightarrow A=xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{k^2-k^2}{2}=0\)

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

21 tháng 4 2017

Xin lỗi mình viết thiếu

Bổ sung: x2+y2+z2<3

23 tháng 1 2018

Sửa đề :

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)

Bài làm

Phân thức đại số

23 tháng 1 2018

đề có sai chỗ nào ko bn,mk thấy chỗ giả thiết sai sai thì phải,bn kt lại giúp mk

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Lời giải:

Cách 1:

Áp dụng BĐT S.Vacxo ta có:

\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)

Theo BĐT Cauchy ta có bổ đề quen thuộc:

\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)

Cách 2:

Áp dụng BĐT Cauchy cho các số dương:

\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)

\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)

\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)

Cộng tất cả các BĐT trên theo vế và rút gọn:

\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)